

Sentiment in Software Engineering

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische

Universiteit Eindhoven, op gezag van de rector magnificus

prof.dr. S.K. Lenaerts, voor een commissie aangewezen door het

College voor Promoties, in het openbaar te verdedigen op

donderdag 31 oktober 2024 om 16:00 uur

door

Nathan Wilmar Cassee

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren en de

samenstelling van de promotiecommissie is als volgt:

Voorzitter: prof.dr. E.R. van den Heuvel

Promotor: prof.dr. A. Serebrenik

Copromotor: dr. N. Novielli (University of Bari)

Leden: prof.dr. G.H.L. Fletcher

 prof.dr. M.-A. Storey (University of Victoria)

 prof.dr. A. van Deursen (TU Delft)

 prof.dr. R. Feldt (Chalmers University of
Technology)

 prof.dr. M. Di Penta (University of Sannio)

Het onderzoek of ontwerp dat in dit proefschrift wordt

beschreven is uitgevoerd in overeenstemming met de TU/e

Gedragscode Wetenschapsbeoefening.

i

Work in the thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics). Thesis
number 2024-16.

A catalogue record is available at the Eindhoven University of Technology
(TU/e) Library.

ISBN 978-90-386-6180-3

All rights reserved. This book or parts thereof may not be reproduced in
any form, stored in any retrieval system, or transmitted in any form by any
means—electronic, mechanical, photocopy, recording, or otherwise—without
prior written permission of the copyright owner.

Copyright © 2024 Nathan Cassee

ii

Summary

Software engineering was once viewed as a solely technical discipline, and
outdated stereotypes used to portray software engineers as “asocial” nerds.
It is now regarded as a highly social and collaborative profession. The social
nature of software explains why sentiment and emotions are expressed during
software development. However, while we know software engineers express
sentiment and emotions, we do not know how these expressions affect the
software development process. In this thesis, we study expressions of sen-
timent and emotions, and specifically, we study three aspects of sentiment
and emotions in software engineering: Theory, Tools, and Practice.
A literature review of 185 papers shows that most of the existing literature
on sentiment and emotions studies whether emotions and sentiment are
expressed by developers. Secondly, we find that existing studies are mostly
correlational, only showing that a correlation between specific sentiment
and emotions exists, but not that the sentiment and emotions cause these
outcomes.
Through studying the tools used to classify sentiment and emotions in
software engineering texts, we find small differences in performance scores
between contemporary machine-learning tools and recently released deep-
learning tools. However, we find notable differences in the types of software
engineering texts that are misclassified by these tools.
Finally, through studying the expression of negativity in Self-Admitted Tech-
nical Debt we find that software engineers use negativity to communicate
the priority of Self-Admitted Technical Debt. Even if the majority of soft-
ware engineers believe negativity should not be used to communicate the

iii

iv

priority of Self-Admitted Technical Debt, they tend to overestimate the pri-
ority of Self-Admitted Technical Debt when negativity is used to describe
it.

Samenvatting

Software engineering werd ooit gezien als een puur technische discipline.
Verouderde stereotypen schilderden software engineers af als ’asociale’ nerds.
Tegenwoordig wordt software engineering gezien als een zeer sociaal en col-
laboratief beroep. De sociale aard van software verklaart waarom senti-
menten en emoties worden geuit tijdens softwareontwikkeling. Maar hoewel
we weten dat software engineers sentiment en emoties uiten, weten we
niet hoe deze uitingen het software ontwikkelproces beïnvloeden. In dit
proefschrift bestuderen we uitingen van sentiment en emoties, en specifiek
bestuderen we drie aspecten van sentiment en emoties in software engineer-
ing: Theorie, Tools en Praktijk.
Een literatuurstudie van 185 artikelen laat zien dat de meeste bestaande
literatuur over sentiment en emoties onderzoekt of emoties en sentiment
worden geuit door ontwikkelaars. Ten tweede vinden we dat bestaande
studies meestal correlationeel zijn, en alleen aantonen dat er een correlatie
bestaat tussen specifiek sentiment en emoties, maar niet dat het sentiment
en de emoties deze uitkomsten veroorzaken.
Door de tools te bestuderen die gebruikt worden om sentiment en emoties in
software engineering teksten te classificeren, vinden we kleine verschillen in
prestatiescores tussen hedendaagse machine-learning tools en recent uitge-
brachte deep-learning tools. Terwijl de prestatiescores misschien gelijk zijn
vinden we opmerkelijke verschillen in de types teksten die door deze tools
verkeerd worden geclassificeerd.
Tot slot, door expressie van negativiteit in Self-Admitted Technical Debt
te bestuderen vinden we dat software engineers negativiteit gebruiken om

v

vi

de prioriteit van Self-Admitted Technical Debt te communiceren. Terwijl
de meerderheid van de software engineers vindt dat negativiteit niet zou
moeten worden gebruikt om de prioriteit van Self-Admitted Technical Debt
te communiceren, heeft een meerderheid van de ontwikkelars toch de neiging
om de prioriteit van Self-Admitted Technical Debt te overschatten wanneer
negativiteit gebruikt wordt om Self-Admitted Technical Debt te beschri-
jven.

Acknowledgements

I have to admit that long before I started writing my PhD thesis, I sometimes
fantasized about writing these acknowledgments. These fantasies were al-
ways premature and probably signified a long-lasting desire to conclude the
writing of the thesis. However, a subconscious longing to be done with this
thesis was not the only motivation; a second motivation is that I’ve ex-
perienced so much support and kindness from many different people while
working on this PhD! I feel incredibly grateful for the support I’ve received,
and these acknowledgments are an opportunity to express my thanks for
this support.
A PhD is often seen as a large collection of ups and downs, and for me, one
of the most important “ups” that helped me complete my PhD was all the
amazing people I’ve met and who have helped me. First and foremost, this
thesis wouldn’t be here without the work of everyone on the committee,
so to all of my committee members, thank you for reading this thesis and
providing me with valuable feedback!
Alexander, on the 18th of April 2016, you invited me to work with you on
a small research project. I could never imagine that this research project
would, eight and a half years later, lead to this thesis. I am incredibly
grateful for your supervision, both when for my master’s and during my
PhD. Your kindness, patience, and support have allowed me to develop
into the researcher I am now. Your guidance and supervision have taught
me so much, and I couldn’t be more grateful that you agreed to be my
promoter.
Nicole, you were there for every turn and bend of my PhD. Your expertise

vii

viii

together with your positivity and kind feedback, allowed me to learn so
much! Thank you for your knowledge, supervision and for agreeing to
become my co-promoter.

Before starting my PhD, I was already lucky enough to get the chance to
work with some incredible researchers. Anton, Thomas, Fernando, Gustavo,
and Bogdan, thank you so much for your willingness to work with me while
I was a master’s student. You helped me discover I like working on research
projects and helped me realize that pursuing a PhD would be a viable career
choice.

During my PhD, I’ve enjoyed working with many smart and amazing people.
This includes Jarl, Twan, Samar, Rinse, Christos and Andrei. It was a
pleasure to supervise you during your master’s, and I’ve learned so much
by working with you. Similarly, I’ve had to pleasure to work with a lot of
different co-authors during my PhD. Adam, Neil, Andrzej, Eleni, Fiorella,
Gianmarco, Derek, Amir, Gabriela, Sonja, Michela, Bin, Ambarish, Dimitri,
and Christian, working with all of you was great! Thank you so much for
working with me. The projects and papers we worked on allowed me to
broaden my scientific horizons, and I have learned so much from working
with you!

My PhD was not only research, I’ve also been involved in various courses.
Jeroen, Hans, Erik, Roel, Boris, Rick, and Lars, thank you for always being
available to answer my stupid questions. Working with and learning from
you has allowed me to develop my teaching skills, and I never would’ve
been able to obtain my UTQ without learning from you! Similarly, Carry,
Zaharah, and Tommaso thank you for your comments and companionship
while writing the UTQ portfolio!

I’ve always felt right at home in SET, and I want to thank you all so much
for the gezelligheid during our social outings and the delicious lunches Maz-
yar cooked for us. David, Hossein, Lars, Jan, Satrio, Nora, Lina, Mazyar,
Lavinia, Nan, Leonard, Filip, Mark, Michel, Tom, Loek, Jacob, and Alexan-
der, your positivity, warmth, and kind words of advice have made TU Eind-
hoven such a great place for me. Likewise, I would like to thank everyone
at FSA, I have always enjoyed our shared lunches, the PhD-meetings, and
all of the shared social events!

In 2024, I had the privilege of visiting Chalmers University of Technology
in Gothenburg. Robert, thank you so much for hosting me! I had a great

ix

time in Gothenburg, thanks to your hospitality and the hospitality of all
the amazing people I met there. Richard, Hans-Martin, Amanda, and Lin-
néa thank you for involving me in your project, it was great to meet and
work with you all! Cristy, Bea, Mazen, Hamdy, Ricardo, Ranim, Francisco,
Krishna, Sabina, and all of the other wonderful (cabo!) people I met in
Gothenburg, thank you for making me feel welcome!

Frits, Koert, Stijn, the other colleagues at Spendlab, and Niek, Maarten,
and Lotte, thank you so much for allowing me to sit at your offices, talk,
and catch up. The change in environment did wonders for my motivation
and creativity!

Apparently, it takes a village to build a PhD thesis! There are so many
friends who have helped or supported me along the way. Juliane, Luuk,
Max, everyone from Vakantie #Altijd, Chillen, Eenwoording, Forum, New
Castlebach, etc. Thank you for being there and for giving me some much-
needed distractions!

Almost ten years ago, I went on a limb and decided to start a pre-master
in computer science. Dad, I would never have made this step without your
guidance, words of advice, and unwavering support. You encouraged my
curiosity for as long as I can remember. This has shaped me and benefits
me to this day. It hurts deeply that I never had the chance to share this
part of my life with you, but know that I will always miss you no matter
where I go.

Mom, Hans, Ria, I owe so much to each of you! Without you, I never
would’ve been able to make it this far, and I am so grateful for all of the
support you have given me. The stability you created in rocky times gave
me the space to develop myself and have some sense of normalcy. Stijn and
Eva, your humor and support have helped keep me sane, and I am so very
lucky to have you as my siblings.

Robin, you are everything to me. Words cannot express how happy I am to
have you in my life and how supported and loved you make me feel. You
encouraged me when I doubted myself and “nudged” me when I needed
more life in my work-life balance. Even now, at the end of the PhD, you
still take me on geo-cache walks when I need it. Thank you so much. I love
you, and I cannot wait to explore the rest of the world with you!

Contents

1 Introduction 1
1.1 Emotions & Sentiment . 3
1.2 Goal & Outline . 4

1.2.1 Theory . 5
1.2.2 Tools . 6
1.2.3 Practice . 8
1.2.4 Studies not included in this thesis 10

2 Opinion Mining for Software Development 13
2.1 Introduction . 14

2.1.1 Scope of Our Study 15
2.1.2 Structure of the Chapter 16

2.2 Related Work . 16
2.2.1 Secondary Studies of Opinion Mining in General Do-

mains . 16
2.2.2 Secondary Studies of Opinion Mining in Software De-

velopment Activities 17
2.3 Research Method . 19

2.3.1 Research Questions 19
2.3.2 Relevant Study Identification 20
2.3.3 Data Extraction and Analysis 26

2.4 Results . 28
2.4.1 RQ1: In which software engineering activities has

opinion mining been applied? 29
2.4.2 RQ2: What publicly available opinion mining tools

have been adopted/developed to support these ac-
tivities? . 36

x

CONTENTS xi

2.4.3 RQ3: How often do researchers evaluate the relia-
bility of opinion mining tools when they adopt the
tools out-of-the-box? 41

2.4.4 RQ4: Which opinion mining techniques have been
compared in terms of performance and in what con-
texts? . 43

2.4.5 RQ5: Which datasets are available for performance
evaluation of opinion mining techniques in software-
related contexts? How are they curated? 46

2.4.6 RQ6: What are the concerns raised or the limitations
encountered by researchers when using/customizing
opinion mining techniques? 50

2.5 Discussion . 55
2.5.1 Replicability of Selected Studies 55
2.5.2 Impact of One-Round Snowballing 55

2.6 Threats to Validity . 57
2.7 Conclusions . 58

2.7.1 Insights for Tool Adoption Practices 59
2.7.2 Directions for Future Work 60

3 Transformers and Meta-Tokenization in Sentiment Analysis
for Software Engineering 63
3.1 Introduction . 64
3.2 Methodology . 67

3.2.1 Tools & Datasets 67
3.2.2 Evaluating tool performance 69

3.3 Results . 73
3.3.1 Machine learning and Deep learning 73
3.3.2 Meta-tokenization 75

3.4 Devil’s Advocate . 78
3.4.1 What process was used to label the items in the

dataset? Could bias in the labeling influence the
results? Could bias in train-test splits influence the
results? . 78

3.4.2 Don’t sentiment analysis tools already apply prepro-
cessing techniques to handle non-natural language? . 79

3.5 Discussion . 82
3.5.1 Applying Sentiment Analysis Tools to Study Soft-

ware Engineering 82

xii CONTENTS

3.5.2 Dataset creation and presence of non-natural language 84
3.5.3 Benchmarking sentiment analysis tools 85

3.6 Threats to Validity . 86
3.6.1 Internal Validity . 86
3.6.2 External Validity . 87
3.6.3 Conclusion Validity 87

3.7 Related Work . 88
3.8 Conclusion . 89

4 Sentiment of Technical Debt Security Questions on Stack
Overflow: A Replication Study 93
4.1 Introduction . 94
4.2 Related Work . 96
4.3 Methodology . 98

4.3.1 Data . 98
4.3.2 Sentiment Analysis Tools 98
4.3.3 Analysis . 99
4.3.4 Availability of Data 100

4.4 Results . 100
4.4.1 RQ4.1: What sentiments are expressed in security-

related technical debt questions on Stack Overflow? . 100
4.4.2 RQ4.2: How does the sentiment contrast with the

sentiment of non-technical debt security-related ques-
tions on Stack Overflow? 101

4.4.3 RQ4.3: What are the underlying reasons as to why
Senti4SD and BERT4SentiSE evaluate a SO ques-
tion to have a different sentiment. 102

4.5 Threats to validity . 105
4.6 Discussion . 107
4.7 Implications . 108
4.8 Conclusion . 109

5 Self-Admitted Technical Debt and Comments’ Polarity: An
Empirical Study 111
5.1 Introduction . 112
5.2 Study Design . 116

5.2.1 Addressing RQ5.1: SATD content coding 117
5.2.2 Addressing RQ5.2 and RQ5.3 119
5.2.3 Addressing RQ5.4 121

CONTENTS xiii

5.2.4 Addressing RQ5.5: Identifying Additional Details in
SATD . 126

5.2.5 Survey Preparation and Sampling 128
5.3 Study Results . 129

5.3.1 Survey Responses 129
5.3.2 RQ5.1: What kind of problems do SATD annotations

describe? . 131
5.3.3 RQ5.2: How do developers annotate SATD that they

believe requires extra priority? 138
5.3.4 RQ5.3: Do developers believe that the expression of

negative sentiment in SATD is an acceptable practice?140
5.3.5 RQ5.4: How does the occurrence of negative senti-

ment vary across different kinds of SATD annotations?142
5.3.6 RQ5.5: To what extent do SATD annotations be-

longing to different categories contain additional de-
tails? . 146

5.4 Discussion . 149
5.5 Related Work . 153

5.5.1 Technical Debt and Self-Admitted Technical Debt . . 153
5.5.2 Sentiment Analysis in Software Development 157

5.6 Threats to Validity . 159
5.7 Conclusion . 162

6 Negativity and the Prioritization of Self-Admitted Technical
Debt 165
6.1 Introduction . 166
6.2 Methodology . 168

6.2.1 Choice of Research Method 168
6.2.2 Experimental Design 169
6.2.3 Data Analysis . 178

6.3 Results . 181
6.3.1 Demographics . 181
6.3.2 Negativity’s Effect on Prioritization 183
6.3.3 Perceptions and Self-Reported Behavior 186

6.4 Discussion . 187
6.5 Threats to Validity . 189
6.6 Related Work . 190

6.6.1 Self-Admitted Technical Debt 190
6.6.2 Sentiment in Software Engineering 191

xiv CONTENTS

6.7 Conclusion . 192

7 Conclusion 195
7.1 Findings . 195

7.1.1 Theory . 196
7.1.2 Tools . 196
7.1.3 Practice . 197
7.1.4 Limitations . 197

7.2 Future Research Directions 198
7.2.1 On Sentiment and Emotions 199
7.2.2 On Human Aspects in Software Engineering 200
7.2.3 On Methodological Novelty 201

Chapter 1
Introduction

Modern software engineering is understood to be a collaborative profession.
Software engineers create and maintain software systems in large, multi-
disciplinary teams, and society is increasingly dependent on these software
systems. Research in software engineering often focuses on understand-
ing and improving the technical challenges encountered by software engi-
neers [143]. Usually, these improvements are mainly achieved by designing,
developing, and adopting new tools. However, software engineers do not
just face technical challenges, evidenced by the fact that software engineers
also encounter a wide variety of social challenges [250, 197, 105, 179]. Be-
cause of these social challenges, the social, human, and behavioral aspects
of software engineering have been extensively studied [258, 143]. Software
engineering is often considered a socio-technical profession because of so-
cial and technical challenges. When studying software engineering, research
should focus not just on the technical challenges. Instead, research should
also focus on the social aspects of software engineering, particularly the
interplay between social and technical aspects.

Because of the collaborative nature of software engineering, communica-
tion is particularly important [109, 258]. Stereotypes were used to portray
software engineering as a solely technical discipline, devoid of emotionally
expressive language [74]. However, by now this stereotype is outdated, and
we know that software engineers communicate extensively when developing
software and also express a multitude of emotions while working [65, 192].

1

2 CHAPTER 1. INTRODUCTION

Literature in organizational psychology has found that expressing emotions
and opinions serves many different purposes. Humans use emotions to em-
phasize the importance of ideas, to form interpersonal bonds [273, 25], and
most importantly, emotions are crucial for collaborative work [129].

Research in software engineering in the last decade has started to explore
when and where software engineers express emotions. This research has fo-
cused, for instance, on software engineers’ expressions of positive emotions
(happy, joy), neutral emotions, or negative emotions (fear, anger) [168, 199,
45]. Girardi et al. studied the range of emotions experienced by software
engineers during a workday, finding that positive emotions are correlated
with perceived productivity [102]. Olsson et al. found that architectural
design smells in software can cause software engineers to feel negative emo-
tions [196]. These studies show that software engineers experience and
express many different emotions while working.

Another unique characteristic of software engineering is the amount of digi-
tal and text-based communication channels software engineers use to com-
municate [252, 109, 125, 141]. Contrary to what one might expect, software
engineers choose to express the emotions and opinions they experience on
these digital channels. For instance, Calefato et al. found that in Stack-
Overflow questions, both positive and negative emotions are expressed [45].
Furthermore, both Lin et al. and Pletea et al. have found that software en-
gineers express opinions either to describe libraries on StackOverflow [151],
or to discuss security issues on GitHub [212].

In this thesis, we study the expression of emotions by software engineers.
We first outline some of the leading scientific theories on emotions and
sentiment in software enigneering before continuing to describe this thesis’s
goal, outline, and contributions.

1.1. EMOTIONS & SENTIMENT 3

1.1 Emotions & Sentiment

“Everyone knows what an emotion is, until asked to give a
definition.”

— Fehr and Russel, 1984 [84]

As highlighted by Fehr and Russell [84], emotions are ubiquitous: Emo-
tions are a part of everyday life, and everyone experiences them. As a
result, many different models and theories of emotions have been proposed
throughout the years. Ekman [81] theorized that emotions are discrete and
that there is a set of six basic emotions experienced by humans: Anger,
Surprise, Happiness, Sadness, Fear, and Disgust. A more granular model
was later proposed by Shaver et al. [235], who proposed a tree-like model
of emotions. In Shaver’s model, there are Primary Emotions such as Anger,
and Secondary Emotions like Irritation, Envy and Rage.

While the model of Shaver already allows reasoning about more specific
emotions, Russell [225] observed that emotions described in one culture
might not exist in other cultures. For instance, Russell [225] describes that
some African languages do not make a distinction between emotions that
are recognized as two different emotions in English: Anger and Sadness.
Therefore, Russell theorized that emotions are continuous, not discrete and
that emotions experienced by humans can be categorized along three differ-
ent axes: Valence, Arousal, and Dominance. Valence is the pleasure of the
emotion, with joy being high in Valence, and anger low in Valence. Arousal
is the intensity of the emotion, rage would, for instance, be high in Arousal,
whereas sadness would be low Arousal. Finally, Dominance represents the
level of control, does someone feel in control of their emotions, or do they
feel controlled?

Software engineering research often uses Ekman’s, Shaver’s or Russell’s
models [43, 189, 168]. So, while we acknowledge that other models ex-
ist, such as Plutchik’s model [213] or the P.A.N.A model [276], we do not
discuss them in detail.

A second construct we discuss is that of Sentiment and sentiment analy-
sis. Sentiment analysis is the automated analysis of opinions or subjective
statements, usually to understand whether the expressed opinion is Positive,
Negative, or devoid of any opinion (Neutral) [203]. One common method

4 CHAPTER 1. INTRODUCTION

used to operationalize sentiment polarity is emotions [189, 45], where text
expressing positive sentiment is defined as text expressing a positive emo-
tion.
Meanwhile, the notion of Opinion mining, a term coined by Dave et al. [71]
in 2003, is the aggregation of sentiment about specific attributes of a prod-
uct (e.g., performance, security, stability). Opinion mining is a broad topic,
covering people’s opinions, appraisals, attitudes and emotions [153].
Finally, it is important to note that there is a difference between feeling
emotions, expressing them, and interpreting them. It is not uncommon, for
instance, for humans to feel an emotion, but choose to mask it [74, 75].
Because of the additional complexities in studying the emotions or sentiment
that software engineers feel, we focus on emotions that have been expressed.
Specifically, we focus on emotions that have been expressed in writing, over
digital communication channels.
Automated classifiers are often used to analyze whether emotions have been
expressed in text [263, 154]. These classifiers, or tools, take as input a frag-
ment of text and classify whether the text expresses any emotions. When
we talk about sentiment analysis tools, and emotion analysis tools, in this
thesis we mean these classifiers. Each classifier might have different at-
tributes, some might use machine-learning or deep-learning principles to
classify [45, 40, 38], while others might use dictionaries [120].

1.2 Goal & Outline
We know software engineers experience and express emotions and sentiment
in many different software engineering activities [151, 212, 196, 102, 183].
Existing work has repeatedly shown correlations between expressed emotions
or sentiment and specific outcomes, such as whether issues are re-opened
or whether bugs are fixed [197]. However, as correlation does not imply
causation, we do not know whether emotions and sentiment also cause
these correlated effects. To understand whether the emotions and senti-
ment expressed by software engineers cause an effect the goal of this thesis
is:

Understanding how expressions of emotions
and opinions affect software engineering.

1.2. GOAL & OUTLINE 5

Studying emotions and sentiment in all software engineering activities is, un-
fortunately, infeasible. There is an enormous variety of software engineering
activities, and it is not yet known how to study sentiment and emotions in
softare engineering. Therefore, we pick three perspectives to study emo-
tions and sentiment: Theory, Tools and Practice. Within each perspective,
we explain what we study, our motivation, and what scientific publications
form the basis for each perspective.

• Theory: We survey the literature published in software engineering
to map out how sentiment, opinion, and expressions of emotions are
studied in software engineering. Through the survey, we give practi-
tioners and researchers an overview of the literature on this topic.

• Tools: We study the automatic tools used to classify sentiment. To
understand how these tools work, we benchmark them in controlled
settings. Furthermore, we also study how the choice of classifiers used
to study sentiment influences the obtained outcomes. This results in
recommendations on how to apply these tools to classify sentiment
and emotions accurately.

• Practice: We describe how the expression of sentiment impacts soft-
ware engineering. In particular, we show how expressions of negative
emotions influence the prioritization of technical debt.

The studies conducted within each of these perspectives results in a series of
findings and recommendations for researchers and software engineers that
are described in the remainder of this section.

1.2.1 Theory

Understanding how software engineers express emotions and how this affects
software engineering starts by surveying the literature on software engineer-
ing. This includes identifying the software engineering activities that have
been studied through the lens of sentiment and emotions, and the methods
that have been used to study these activities. Therefore, we conducted
a literature review in which we surveyed empirical, peer-reviewed research
papers published in academic journals and conferences that use any form
of opinions, or subjective language (including emotions and sentiment) to
study software engineering. The scope of this study is wider than the scope
of the thesis, however, for this thesis, we focus on the results of the litera-
ture study related to emotions and sentiment i.e., the software engineering

6 CHAPTER 1. INTRODUCTION

activities studies through the lens of emotions and sentiment. In particular,
we list the software engineering activities that have been studied, the tools
used to study these activities, and the performance of these tools.
We identified 185 primary studies that use sentiment, emotions, and other
forms of opinions [203] to study software engineering. Most importantly,
we find that various constructs have been used to study software engineer-
ing, including but not limited to emotions, sentiment, and politeness. Fur-
thermore, the most common application of sentiment analysis in software
engineering is detecting whether sentiment has been expressed in software
artifacts or whether software engineer performance correlates with the ex-
pression of sentiment. Additionally, we find that researchers use various
automated tools to classify sentiment, emotions, and politeness in texts
written by software engineers. Unfortunately, we also find that some stud-
ies do not use the appropriate tools or always evaluate the tools they use
for software engineering data. This is potentially problematic, as not using
classifiers designed for software engineering data could influence the results
of the conducted studies [123, 190].
The literature review is discussed Chapter 2, and the original paper has been
published in the ACM Transactions on Software Engineering and Method-
ology (TOSEM) journal:

[149]: Lin, B., Cassee, N., Serebrenik, A., Bavota, G., Novielli, N.,
& Lanza, M. (2022). Opinion Mining for Software Develop-
ment: A Systematic Literature Review. ACM Transactions on
Software Engineering and Methodology, 31(3), 1–41. https:
//doi.org/10.1145/3490388

1.2.2 Tools
Our findings from Chapter 2 show the importance of the tools used to
study the expression of sentiment in software engineering. Therefore, in
the second part of the thesis, we study the tools used to classify sentiment
to learn how to reliably use these tools to study the role of sentiment in
software engineering. In this part of the thesis, we discuss two studies: A
benchmarking study to understand how we can further improve sentiment
analysis tools and a replication study to understand how the conclusions of
studies that study sentiment are sensitive to tool changes.
In the benchmarking study, we selected two existing recommendations from

https://doi.org/10.1145/3490388
https://doi.org/10.1145/3490388

1.2. GOAL & OUTLINE 7

the literature on how to improve and apply sentiment analysis tools for
software engineering [38, 80]. To evaluate these recommendations and un-
derstand how sentiment analysis tools for software engineering should be
employed, we run a series of benchmarks. Specifically, we evaluate two dif-
ferent types of sentiment analysis tools, machine-learning tools, and deep-
learning, and we find that small performance differences exist between the
machine-learning and deep-learning-based sentiment analysis tools. Fur-
thermore, we find that advanced preprocessing techniques, specifically the
usage of domain-specific tokenizations, do not further improve the perfor-
mance of sentiment analysis tools.

The benchmarking study is discussed in Chapter 3 and has been published
at the Springer journal Empirical Software Engineering (EMSE):

[48]: Cassee, N., Agaronian, A., Constantinou, E., Novielli, N., &
Serebrenik, A. (2024). Transformers and meta-tokenization in
sentiment analysis for software engineering. Empirical Soft-
ware Engineering, 29(4), 77. https://doi.org/10.1007/
s10664-024-10468-2

Based on previous replications, we know that the automated tool used to
classify sentiment influences obtained conclusions [123, 190]. In particular,
tools not designed for application to software engineering data have difficul-
ties understanding technical lingo. Therefore, the second study discussed
replicates a study of Edbert et al. [79]. In the original study, Edbert et al.
studied whether there are differences in different groups of security-related
StackOverflow questions. Unfortunately, Edbert et al. use VADER [118],
a general-purpose sentiment analysis tool, instead of a sentiment analysis
tool specially designed for an application to software engineering. To better
understand the effects of general-purpose sentiment analysis tools on the
obtained conclusions, we replicate the work of Edbert et al. using two senti-
ment analysis tools designed for software engineering. Through a qualitative
analysis of the differences in the predictions made, we find clear differences
between VADER and the two evaluated sentiment analysis tools.

The replication study is discussed in Chapter 4 and has been published
at the IEEE International Conference of Software Analysis, Evolution and
Reengineering (SANER) in 2024:

https://doi.org/10.1007/s10664-024-10468-2
https://doi.org/10.1007/s10664-024-10468-2

8 CHAPTER 1. INTRODUCTION

[121]: Jansen, J., Cassee, N., & Serebrenik, A. (2024). Sentiment of
Technical Debt Security Questions on Stack Overflow: A Repli-
cation Study. 31st IEEE International Conference on Software
Analysis, Evolution and Reengineering.

1.2.3 Practice
Understanding how other researchers study sentiment in software engineer-
ing, and understanding how to use sentiment analysis tools does not yet
help us understand how expressions of sentiment affect software engineer-
ing. Therefore, we study expressions of negative sentiment in Self-Admitted
Technical-Debt (SATD). SATD is the self-admission of suboptimal techni-
cal decisions (commonly known as technical debt) in a software system’s
source code.

To understand how expressions of emotions affect software engineering, we
select SATD and the annotation practices of software engineers as case. By
studying how software engineers communicate technical issues using SATD,
particularly by studying whether and how negativity in SATD descriptions is
used to signal priority, we hope to learn lessons that can be used to explain
the effect of emotions and opinions on software engineering.

We first study whether software engineers express negativity in existing in-
stances of SATD. Through a qualitative analysis, we find that SATD re-
lated to functional issues or external dependencies is more likely to contain
negative sentiment. Based on these results, we hypothesize that software
engineers use negativity as a proxy for priority and emphasize the urgency
of a particular instance of SATD.

We conducted a follow-up study to test whether software engineers use
negativity as a proxy for priority. This follow-up study used a survey to
understand software engineers’ perceptions and beliefs. We asked the 46
participants about their experiences and perceptions in the survey. For in-
stance: Are the participants more likely to express negativity in SATD if they
believe the issue present is more important? Do participants believe it is
acceptable for others to express negativity in high-priority SATD? Through
the survey, we find that a third of software engineers admit to using nega-
tivity in high-priority SATD, while most of the remaining software engineers
state they do not do this and do not think it is an acceptable practice.

The labeling study and the survey are discussed in Chapter 5, and the

1.2. GOAL & OUTLINE 9

chapter has been published in the Springer journal Empirical Software En-
gineering (EMSE):

[52]: Cassee, N., Zampetti, F., Novielli, N., Serebrenik, A., & Di Penta,
M. (2022). Self-Admitted Technical Debt and comments’ polar-
ity: an empirical study. Empirical Software Engineering, 27(6),
139. https://doi.org/10.1007/s10664-022-10183-w

This paper is an extension of a paper published initially at the Mining
Software Repositories (MSR) conference:

[90]: Fucci, G., Cassee, N., Zampetti, F., Novielli, N., Serebrenik, A.,
& Di Penta, M. (2021). Waiting around or job half-done? Senti-
ment in self-admitted technical debt. 2021 IEEE/ACM 18th In-
ternational Conference on Mining Software Repositories (MSR),
403–414. https://doi.org/10.1109/MSR52588.2021.00052

While software engineers state they use negativity as a proxy for priority,
it is apriori not clear whether this means that software engineers actually
interpret negativity as a signal that an item of technical debt has a higher
priority. Therefore, to verify whether negativity is interpreted as a proxy
for priority, we ran an experiment with 75 software engineers. We showed
these participants a series of vignettes we purposefully selected and created
to be realistic instances of SATD. We asked the experiment participants to
estimate the priority of the SATD shown in the vignette. By experimen-
tally varying the presence of negative language in these vignettes, we study
whether negativity influences the participants’ perception of priority.

Through the experiment, we find that one-third to half of software engineers
perceive the priority of an instance of SATD as higher when negativity is
expressed to describe it. Furthermore, whether a software engineer inter-
prets negativity as a proxy for priority depends on the software engineer’s
self-reported beliefs. i.e., software engineers who state they interpret neg-
ativity as a proxy for priority are also more likely to increase prioritization
scores when descriptions are negative. We believe this shows how software
engineers not only use self-admitted technical debt to communicate about
technical issues, but also to communicate priority.

The experimental study is discussed in Chapter 6 and the manuscript de-
scribing it is currently in preparation.

https://doi.org/10.1007/s10664-022-10183-w
https://doi.org/10.1109/MSR52588.2021.00052

10 CHAPTER 1. INTRODUCTION

Cassee N., Ernst N., Novielli N., & Serebrenik A. (2024). How Neg-
ativity in Self-Admitted Technical-Debt Affects Prioritization. Under
Review.

Contributions of the Author

All of the studies described in this thesis have been conducted with col-
laborators, in this section, we explain the role of the author in each of the
chapters. In Chapter 2, the author contributed to the design of the method-
ology, data collection, data analysis, writing, and reviewing of the draft. For
Chapter 3, the author contributed to the drafting of the research question,
design of the methodology, data-collection and analysis, and the writing
and correction of the draft. For Chapter 4, the author drafted the research
questions, corrected the paper draft, and supervised the master student
who worked on the study. For Chapters 5 and 6, the author contributed to
the drafting of the research questions, data collection, data analysis, and
writing and correction of the drafts of the chapters.

1.2.4 Studies not included in this thesis

In addition to the publications included in this thesis, described in the sec-
tions above, we have also worked on other publications. Below, we briefly
outline and describe these publications.

Bots in Software Engineering Software bots are automated tools that
use human communication channels like code-review comments [257].1

In a series of three studies, we studied how software engineers perceive the
acts bots take within software communities (Ghorbani et al. [101]), the
impacts of bots on human behavior in software projects (Moharil et al.
[180]), and how emerging patterns of bot behavior influences bot detection
tools (Cassee et al. [49]).

1We acknowledge that there are several competing definitions of software bots [256].
However, for the context of the studies listed here, this definition is appropriate.

1.2. GOAL & OUTLINE 11

[101]: Ghorbani, A., Cassee, N., Robinson, D., Alami, A., Ernst, N.
A., Serebrenik, A., & Wąsowski, A. (2023). Autonomy Is An
Acquired Taste: Exploring Developer Preferences for GitHub
Bots. 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), 1405–1417. https://doi.org/10.
1109/ICSE48619.2023.00123

[180]: Moharil, A., Orlov, D., Jameel, S., Trouwen, T., Cassee, N.,
& Serebrenik, A. (2022). Between JIRA and GitHub: ASF-
Bot and its influence on human comments in issue trackers.
Proceedings of the 19th International Conference on Mining
Software Repositories, 112–116. https://doi.org/10.1145/
3524842.3528528

[49]: Cassee, N., Kitsanelis, C., Constantinou, E., & Serebrenik, A.
(2021). Human, bot or both? A study on the capabilities
of classification models on mixed accounts. 2021 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME), 654–658. https://doi.org/10.1109/ICSME52107.
2021.00075

Impact of Continuous Integration For my master thesis, we studied
how adopting automated build tools (continuous integration) influences the
code review process. At the start of my PhD, we adapted the master thesis
into a technical paper that was published at SANER.

[51]: Cassee, N., Vasilescu, B., & Serebrenik, A. (2020). The Silent
Helper: The Impact of Continuous Integration on Code Reviews.
2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 423–434. https://doi.
org/10.1109/SANER48275.2020.9054818

Koester de Ontwikkelaar “Koester de Ontwikkelaar” is a Dutch phrase,
meaning “cherish the Developer”. This contribution is an article written
for AGConnect,2 a popular science magazine targeting Dutch Software en-
gineers. In the article, we took several recently published studies about

2https://www.agconnect.nl/

https://doi.org/10.1109/ICSE48619.2023.00123
https://doi.org/10.1109/ICSE48619.2023.00123
https://doi.org/10.1145/3524842.3528528
https://doi.org/10.1145/3524842.3528528
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/SANER48275.2020.9054818
https://doi.org/10.1109/SANER48275.2020.9054818
https://www.agconnect.nl/

12 CHAPTER 1. INTRODUCTION

human and behavioral aspects of software engineering, including the find-
ings of Chapter 5, and summarized them. Through this article, we gave
Dutch practitioners an overview of the state of the art of research in soft-
ware engineering and describe what these studies mean for software engi-
neering.

[50]: Cassee, N., & Serebrenik, A. (2021). Koester de ontwikkelaar.
AG Connect, 2021 (december), 69-71. https://www.win.tue.
nl/~aserebre/AGConnect.pdf

Teaching Empirical Methods Part of my teaching responsibilities at
Eindhoven University of Technology included designing and teaching a course
on empirical methods for software engineering. We published the design of
the course, and our experiences of teaching it, as a chapter in the, soon
to be published, book “Teaching Empirical Research Methods in Software
Engineering”.

[234]: Serebrenik, A., & Cassee, N. (2024). Teaching Empirical Meth-
ods at Eindhoven University of Technology. Teaching Empir-
ical Research Methods in Software Engineering, To Appear.
https://arxiv.org/abs/2407.04657

https://www.win.tue.nl/~aserebre/AGConnect.pdf
https://www.win.tue.nl/~aserebre/AGConnect.pdf
https://arxiv.org/abs/2407.04657

Chapter 2
Opinion Mining for Software
Development

Opinion mining, sometimes referred to as sentiment analysis, has gained
increasing attention in software engineering (SE) studies. SE researchers
have applied opinion mining techniques in various contexts, such as iden-
tifying developers’ emotions expressed in code comments and extracting
users’ critics toward mobile apps. Given the large amount of relevant stud-
ies available, it can take considerable time for researchers and developers to
figure out which approaches they can adopt in their own studies and what
perils these approaches entail.

We conducted a systematic literature review involving 185 papers. More
specifically, we present 1) well-defined categories of opinion mining-related
software development activities, 2) available opinion mining approaches,
whether they are evaluated when adopted in other studies, and how their
performance is compared, 3) available datasets for performance evaluation
and tool customization, and 4) concerns or limitations SE researchers might
need to take into account when applying/customizing these opinion mining
techniques. The results of our study serve as references to choose suitable
opinion mining tools for software development activities, and provide critical
insights for the further development of opinion mining techniques in the SE
domain.

13

14 CHAPTER 2. LITERATURE STUDY

2.1 Introduction

Opinion mining, the term coined by Dave et al. [71] in 2003, was introduced
to refer to “processing a set of search results for a given item, generating
a list of product attributes (quality, features, etc.) and aggregating opin-
ions about each of them (poor, mixed, good)”. They proposed a tool to
classify product review sentences according to the polarity of the sentiment
expressed, i.e., whether these sentences have a positive or negative connota-
tion. Tasks that capture sentiment polarity are also called “sentiment anal-
ysis” in some other studies [185, 155]. Indeed, the terms “opinion mining”
and “sentiment analysis” are often used interchangeably [203, 155].

Since its emergence, opinion mining has evolved and is no longer limited to
classifying texts into different polarities. For example, Conrad and Schilder
[61] analyzed subjectivity (i.e., whether the text is subjective or objective) of
online posts when mining opinions from blogs in the legal domain. Hu et al.
[115] adopted a text summarization approach, which identifies the most in-
formative sentences, to mine opinions from online hotel reviews. These new
perspectives call for a broader definition of opinion mining. According to
Liu [153], “opinion mining analyzes people’s opinions, appraisals, attitudes,
and emotions toward entities, individuals, issues, events, topics, and their
attributes”.

In recent years, opinion mining has attracted considerable attention from
software engineering researchers. Studies have seen the usage of opinion
mining in collecting informative app reviews, to understand how developers
can improve their products and revise their release plans [119, 54, 204,
274, 160, 229]. Researchers have also applied opinion mining techniques
to monitor developers’ emotions expressed during development activities
[108, 183, 199, 241, 44, 278, 140]. Opinion mining has also been used to
assess the quality of software products [72, 27].

Given all these studies, it is important to have an overview of existing
opinion mining techniques and their applications in software engineering. In
this way, researchers can have a base to advance the field, and tool users
can better understand how they can apply the existing techniques and what
their limitations are.

We provide a systematic literature review on opinion mining for software
development activities. Our contributions are:

2.1. INTRODUCTION 15

i We provide an overview of opinion mining techniques researchers and
developers can use for specific tasks;

ii We present datasets developers can use to train or validate techniques;
iii We report on the results of the tool performance validation, which can

serve as a guidance for researchers to conduct performance evaluation
and sheds light on the threats when using these tools;

iv We identify the common issues software engineering researchers face
when applying opinion mining and indicate the potential solutions;

v We identify directions for future research in the field.

2.1.1 Scope of Our Study
Opinion mining is evolving, and covers a wide range of topics. Adopting the
categories by Pang and Lee [203], we consider under the umbrella of works
related to opinion mining in software development activities those dealing
with:

• Sentiment polarity identification, to classify the opinions expressed
in the text into one of the distinguishable sentiment polarities (e.g.,
positive, neutral, or negative). Examples include identifying whether
developers are expressing positive sentiment in daily communications
and discovering whether a code review is expressing negative aspects,
which can be associated with specific shortcomings of the source code.

• Subjectivity detection and opinion identification, to decide whether
a given text contains subjective opinions or objective information. An
example is distinguishing whether developers/users are discussing a
fact about software or presenting their own point of view.

• Joint topic-sentiment analysis, which considers topics and opin-
ions simultaneously and search for their interactions. For example,
researchers might analyze which aspects are mentioned in user re-
views (e.g., performance, usability) and whether these discussions are
positive or negative.

• Viewpoints and perspectives identification, to detect the general
attitudes expressed in the texts (e.g., political orientations) instead
of detailed opinions toward a specific issue or narrow subject. An ex-
ample of perspectives include general preferences of some platform-
s/technologies over others.

16 CHAPTER 2. LITERATURE STUDY

• Other non-factual information identification, to detect all other
types of non-factual information, including e.g., emotion detection,
humor recognition, text genre classification. Tasks like identifying
what requests users are asking for and extracting knowledge embedded
in software documents fall into this category.

2.1.2 Structure of the Chapter

Section 2.2 presents the relevant surveys, literature reviews and mapping
studies. Section 2.3 presents our research questions and our methodology to
conduct the systematic literature review. Section 2.4 reports the results we
obtained. Section 2.5 discusses the replicability of selected primary studies
and the impact of how snowballing is conducted. Section 2.6 discusses the
threats that could affect the validity of our results. Section 2.7 concludes
the chapter.

2.2 Related Work
Given the development of opinion mining techniques, many secondary stud-
ies have been conducted to present an overview of this field. In the following
we discuss relevant systematic literature reviews (SLR), surveys, and map-
ping studies on opinion mining.

2.2.1 Secondary Studies of Opinion Mining in General Do-
mains

As one of the earliest secondary study of opinion mining, Liu [156] defined
the problem of opinion mining and presented the key tasks and their corre-
sponding techniques in the literature. This study also specifically discussed
the issue of spam detection and quality assessment of online reviews. The
survey by Ravi and Ravi [218] presented opinion mining tasks and relevant
techniques at a more fine-grained level. That is, all the tasks and sub-
tasks were discussed in the following aspects: the addressed problem, used
dataset, selected features, techniques and their performance.

Hemmatian and Sohrabi [112] mainly focused on the categorization of opin-
ion mining techniques. In their survey, opinion mining was classified into
four levels: document, sentence, aspect, and concept. They also summa-
rized different types of techniques used in two major opinion mining tasks:

2.2. RELATED WORK 17

aspect extraction and opinion classification. Li et al. [145] classified opin-
ion mining techniques for social multimedia into three categories based the
source of opinions: textual sentiment analysis (mining opinions from social
media messages), visual sentiment analysis (mining opinions from visual
content such as images and videos), and multimodal sentiment analysis
(mining opinions from both textual and visual content).

Instead of presenting opinion mining tasks and techniques, Kumar and
Nandkumar [137] identified several challenges in opinion mining from lit-
erature, such as non-expertise opinions, spam opinions, and opinion trust
worthiness. They also summarized the advantages and disadvantages of
current opinion mining techniques.

Mäntylä et al. [170] analyzed the evolution of opinion mining studies. More
specifically, they observed the number of relevant publications, the number
of citations, and popular publication venues over the years. They also run
topic modeling techniques on the papers to obtain a thematic overview of
the research topics. Moreover, they investigated the research topics of the
most cited work in this field.

These studies give a good overview of opinion mining tasks and techniques
in general domains. However, our previous studies [123, 151, 189] have
demonstrated that the performance of sentiment analysis tools trained on
the data from other domains (e.g., SentiStrength trained on social me-
dia texts) is not satisfactory when they are used in software engineering
related tasks (e.g., identifying sentiment polarity embedded in API discus-
sions). Therefore, a literature review dedicated to the software engineering
domain is highly desired.

2.2.2 Secondary Studies of Opinion Mining in Software De-
velopment Activities

We identified eight secondary studies related to opinion mining in software
development activities.

The SLR conducted by Sánchez-Gordón and Colomo-Palacios [227] focused
on works dealing with emotions of software developers. The authors investi-
gated 66 papers covering 40 discrete emotions expressed by developers and
found that while the unreliability of sentiment analysis tools is well recog-
nized, not many works in the literature have leveraged other measures such
as self-reported emotions and biometric sensors.

18 CHAPTER 2. LITERATURE STUDY

Obaidi and Klünder [194] inspected 80 studies related to sentient polarity
and emotion analysis. Their study mainly looked into the application sce-
narios (i.e., open-source projects, industry, academic) and the motivations
(e.g., find best tool, value measurement). They also counted how many
times different data types and techniques are used, and listed some fre-
quently mentioned difficulties when analyzing sentiment polarity and emo-
tion in software engineering.

Many SLRs have focused on works related to the analysis of app reviews.
Martin et al. [171] conducted a survey on papers related to app store anal-
ysis, and identified the aspects which have been explored as well as research
trends. Noei and Lyons [188] surveyed 21 papers providing guidelines on
how to process, analyze, and use user reviews from app stores. Tavakoli
et al. [261] investigated the tools developed for analyzing app reviews and
presented the types of information these tools can collect and the challenges
these tools are facing. Similarly, the SLR by Genc-Nayebi and Abran [100]
involved 24 studies and identified techniques for mining online reviews and
challenges in the domain. Moreover, they inspected studies concerning the
quality assessment of reviews and spam identification.

The remaining two studies fall into the domain of requirements engineer-
ing. Meth et al. [176] analyzed 36 publications regarding automated re-
quirements elicitation, and classified them based on tool category, degree
of automation, knowledge reuse, evaluation approach, and evaluation con-
cepts. Wang et al. [275] provided a systematic mapping study which fo-
cuses on leveraging crowdsourced user feedback in requirements engineering.
The feedback can be either explicit (e.g., directly given in crowd-generated
comments) or implicit (e.g., mined from application logs or usage-generated
data). The primary studies surveyed in these two studies often mine opinions
and emotions toward software products from user comments and overlap
with those related to app review analysis.

While all these studies cover various topics of opinion mining in software
development, they have a focus on very specific areas, such as emotions
[227, 194], sentiment polarity [194], app review analysis [171, 261, 100],
and requirements engineering [176, 275]. Our study aims at giving a com-
plete picture of the usage of opinion mining techniques in software de-
velopment, focusing on the research questions presented in Section 2.3.1.
While other secondary studies mainly aim to give an overview of current
development of the techniques and their applications, we have a different

2.3. RESEARCH METHOD 19

goal, i.e., to help researchers and developers better adopt/customize opin-
ion mining tools in their own work. Therefore, in this literature review, we
have specifically looked into the datasets available, the performance com-
parison of the available tools, and the issues specific to tool adoption and
customization.

2.3 Research Method
Following the guidelines by Kitchenham and Charters [128] to perform our
systematic literature review, we present our research questions, search strat-
egy, study selection process, as well as the methodology for data extraction
and analysis.

2.3.1 Research Questions
To help software engineering researchers better conduct opinion mining re-
lated studies and assist practitioners in adopting suitable opinion mining
approaches in their projects, this literature review aims to understand the
following high-level research question (RQ):

RQ: How can opinion mining techniques support software development ac-
tivities?

To answer this RQ, it is essential to understand what has been accomplished
so far with opinion mining techniques in software development activities.
Moreover, knowing the limitations of state-of-the-art approaches is needed
to improve the existing techniques or propose new approaches. Therefore,
to answer this RQ in a more structured manner, we decompose it into the
following RQs:

• RQ1: In which software engineering activities has opinion mining been
applied? We aim to understand the application domains of opinion
mining techniques in software engineering, to present an overview on
how these techniques are used, thus revealing the potential of opinion
mining in software-related tasks.

• RQ2: What publicly available opinion mining tools have been adopt-
ed/developed to support these activities? We present the opinion
mining techniques proposed in the literature categorized by their func-
tionalities, to obtain an overview about which tools can be used for
which specific tasks.

20 CHAPTER 2. LITERATURE STUDY

• RQ3: How often do researchers evaluate the reliability of opinion min-
ing tools when they adopt the tools out-of-the-box? As researchers
have already disclosed [123, 151, 189], opinion mining techniques
might not achieve satisfactory results when applied in a different con-
text than the one they have been designed for. Thus, it is important
to assess the reliability of these tools when used out-of-the-box. We
investigate how often opinion mining techniques are evaluated before
being applied without any customization in software-related studies.

• RQ4: Which opinion mining techniques have been compared in terms
of performance and in what contexts? Since opinion mining tools
perform differently in different contexts, we summarize the studies in
the literature aimed at comparing the performance of different opinion
mining tools in specific contexts. This will quickly point researchers
and practitioners to studies aimed at identifying the most appropriate
tools to use in a given context.

• RQ5: Which datasets are available for performance evaluation of
opinion mining techniques in software-related contexts and how are
they curated? Given that the context might significantly impact the
performance of opinion mining tools, we aim to present the available
datasets which can be used to either train supervised techniques or
validate the tool performance by serving as oracle. To ensure the relia-
bility of the datasets, we only consider the datasets whose correctness
has been manually validated by the authors. We exclude datasets
which only contain data scraped from online resources without any
further sanity check.

• RQ6: What are the concerns raised or the limitations encountered
by researchers when using opinion mining techniques? Our goal is to
summarize the issues encountered during the application of opinion
mining techniques in software engineering tasks. We also discuss the
potential directions for addressing these issues.

2.3.2 Relevant Study Identification

The process of identifying relevant studies to be included in our litera-
ture review can be seen as Fig. 2.1. This process was conducted in early
2020.

2.3. RESEARCH METHOD 21

Online Database
Search

Study Filtering One Round Snowballing

Selected Studies

Filtering based on title
and abstract

Filtering based on full
text

Backward
snowballing

Forward snowballing

ɠ�N1=795 ɡ�N1=127 ɤ�N2=268 ɢ�N1=71

ɣ�N2=1�056

ɥ�N2=114

ɦ�N1+N2=���

Figure 2.1: Relevant study identification process. N1 is the number of pa-
pers from the database searching, and N2 is the number of papers resulting
from the snowballing.

Search Strategy

We used the following digital libraries to search for primary studies: ACM
Digital Library [1], IEEE Xplore Digital Library [4], Springer Link Online
Library [11], Wiley Online Library [14], Elsevier ScienceDirect [3], and Sco-
pus [9]. We did not include Google Scholar due to several shortcomings
identified by Halevi et al. [110], namely the lack of quality control and clear
indexing guidelines, as well as the missing support for data downloads.
The following search query was used to locate primary studies in these online
databases:

("opinion mining" OR "sentiment analysis" OR "emotion") AND
("software") AND ("developer" OR "development")

This query has been defined through a trial-and-error procedure performed
by the first author and a discussion among all authors. While Landman
et al. [139] pointed out that adding an “OR” operator to the query may
reduce the number of results in some databases such as IEEE Xplore, we
tested such a feature by comparing the results of queries using the “OR”
with the aggregated results of several queries each one using one of the
search terms in OR. We did not spot any difference, showing that the “OR”
operator is working correctly. We conjecture that the difference with the
observations of Landman et al. [139] can be attributed to an update of the
search engines after their study.
The goal of the query is to retrieve all relevant studies (i.e., high recall)
while keeping reasonable the effort needed to remove false positives in the
subsequent manual analysis. The search terms “opinion mining” and “sen-
timent analysis” have been included since they are often used as synonyms

22 CHAPTER 2. LITERATURE STUDY

[152]. Emotion analysis is also attracting attention in studies dealing with
human aspects of software engineering [192] and, thus, the term “emotion”
was included as well. While opinion mining also includes other aspects such
as humor detection [22], these topics are not commonly studied in software
engineering. Therefore, we do not include the corresponding terms such as
“humor” in our query. Concerning the second part of the query, using the
term “software engineering” to identify relevant studies resulted to be a too
strict searching criterion, while only using “software” resulted in the intro-
duction of too much noise. The (“developer” OR “development”) search
condition allowed to reach a fair balance between the number of papers we
need to manually inspect and the coverage of relevant studies. While we
are aware that some studies might not explicitly include these two terms,
this issue has then been mitigated through a snowballing process explained
later.

On ACM Digital Library and IEEE Xplore, we conduct the search within
its default search box, while in the rest of the databases, due to the large
number of irrelevant results returned, we enforced more restrictions when
searching. We set the search field of Elsevier ScienceDirect and Scopus
to “title, abstract, keywords”, meanwhile the “Subject Area” of Scopus
was limited to “Computer Science” to exclude studies out of our interest.
We only searched “abstract” of Wiley as multiple-field search is not sup-
ported. Also in this case “Computer Science” was used to constrain the
subject. For SpringerLink Online Library, we set the “Discipline” and “Sub-
discipline” to “Computer Science” and “Software Engineering”, obtaining
1,967 papers. Since SpringerLink does not allow search on specific fields,
we crawled meta-information of these 1,967 papers and filtered them by
using our search query in “title, abstract, keywords”. We acknowledge that
enforcing stricter constraints on some databases might lead to the exclu-
sion of relevant studies. However, the backward and forward snowballing
performed later on described significantly mitigates this threat.

Table 2.1: Number of documents returned after searching the databases.

ACM Digital Library 340
IEEE Xplore Digital Library 243

Source Returned Documents

Continued on next page

2.3. RESEARCH METHOD 23

Table 2.1: Number of documents returned after searching the databases.
(continued)

Springer Link Online Library 19
Wiley Online Library 29
Elsevier ScienceDirect 46
Scopus 580

Total (Excluding duplicates) 795

Source Returned Documents

Study Selection

Based on the search strategy, we identified relevant studies following a
process involving study filtering and snowballing, as indicated in Fig. 2.1.
N1 indicates the batch of papers coming from the search query at the
end of each step, while N2 shows the number of papers resulting from the
snowballing procedure. The lists of papers after each step of study selection
can be found in our replication package [148]. Table 2.1 summarizes the
search results. After removing duplicates in the documents returned found
in the different databases, we obtained a total of 795 papers.

Table 2.2: Inclusion and Exclusion Criteria

IC1 The paper must be peer-reviewed and published at confer-
ences, workshops, or journals; to only include papers which
have undergone scrutiny by the scientific community.

IC2 The paper must be accessible online (i.e., PDF files available
in the selected databases or through Google Search results);
to ensure the accessibility of the studies.

IC3 The paper must be included in one of our databases; to prevent
including papers from predatory publishing venues. This crite-
rion only applies to the papers collected from the snowballing
process described later.

Inclusion Criteria

Continued on next page

24 CHAPTER 2. LITERATURE STUDY

Table 2.2: Inclusion and Exclusion Criteria (continued)

IC4 The study presented in the paper must be related to soft-
ware development activities (e.g., requirements, design, imple-
mentation, testing, documentation, maintenance, team man-
agement, etc.); to enforce our research scope listed in Sec-
tion 2.1.1.

IC5 The study must adopt at least one opinion mining technique
which automatically extracts opinions from texts; to enforce
as main research subject “opinion mining”.

Exclusion Criteria

EC1 The paper is not in English. Rationale: English is the primary
language for published academic studies.

EC2 The technique presented only works for a language other than
English. Rationale: we aim to ensure the techniques in the
studies are comparable.

EC3 The paper is a duplicate or a conference paper extended into
a journal article. Rationale: we aim to prevent redundancy.

EC4 The paper is not a full research publication (e.g., abstract
only submissions, doctoral symposium articles, presentations,
tutorials, posters, forewords, etc.). Rationale: these artifacts
are not subjected to the same peer-reviewing process as full
research papers.

EC5 The paper does not describe what approach was used to ex-
tract opinions/information. Rationale: studies lacking such
information are often of low quality and do not provide useful
information for answering our RQs.

Inclusion Criteria

Study Filtering. The 795 papers went through a two-step filtering process.
In the first round, we manually inspected the title and the abstract, and
removed unrelated documents. A web app was developed to support this
process (source code available in our replication package [148]). The web
app assigned a batch of papers to filter to each author, who indicated
whether it should be (i) “included in the study”, (ii) “discarded”, or (iii)

2.3. RESEARCH METHOD 25

“used as a secondary study”. The last option was used to indicate that
the paper was not a primary study, but rather a literature review, survey or
an article introducing the topic. The selected secondary studies have been
used in the snowballing process to identify additional primary studies. Each
paper was assigned to two of the authors, to reduce the chance that a paper
was discarded by mistake. We observed disagreement on 82 papers, which
were discussed by all of the authors until a consensus was reached. Then,
in the second-round filtering, we downloaded the papers selected as primary
studies and each paper was manually inspected by one author to examine
if they met our inclusion and exclusion criteria (Table 2.2).

At the end of first-round filtering, we obtained 127 papers to include, 662
papers to discard, and 6 papers classified as secondary studies. After the
second-round filtering on the 127 papers to include, 71 papers remained as
primary studies.

Snowballing. Since keyword-based search might result in omitting relevant
studies, we also performed a snowballing-based search on the 127 papers
selected as primary studies and on the 6 papers tagged as secondary studies.
While 56 out of 127 studies were excluded in the second-round filtering,
we still included them in the snowballing process as they might contain
references to papers we are interested in.

We performed both backward and forward snowballing. Backward snow-
balling was performed during the second-round filtering, each paper was
analyzed by one author and the papers in the references which might be
relevant are recorded based on their titles. For forward snowballing, we col-
lected all the papers citing these 133 (127+6) papers from Google Scholar.
In the end, we obtained 1,056 new papers after duplication removal. All
these papers were fed into our paper filtering process. After the first-round
filtering, we marked 268 papers as selected primary studies; and after the
second-round filtering, 114 papers were left. Due to the limited human re-
sources, we only applied snowballing once instead of iteratively. Therefore,
we discarded those papers labeled as “secondary study” identified during our
snowballing process, and no further snowballing was performed on them. In
total, 185 studies are included in our study.

26 CHAPTER 2. LITERATURE STUDY

Table 2.3: Data extraction form.

1 What is the main goal of the whole study? RQ1

2 Does the paper propose a new opinion mining approach? RQ2

3 Which opinion mining techniques are used (list all of
them, clearly stating their name/reference)?

RQ2

4 Which opinion mining approaches in the paper are pub-
licly available? Write down their name and links. If no
approach is publicly available, leave it blank or None.

RQ2

5 What the researchers want to achieve by applying the
technique(s) (e.g., calculate the sentiment polarity of
app reviews)?

RQ2

6 Is the application context (dataset or application do-
main) different from that for which the technique was
originally designed?

RQ3

7 Is the performance (precision, recall, run-time, etc.) of
the technique verified? If yes, how did they verify it and
what are the results?

RQ3,
RQ4

8 What success metrics are used? RQ4

9 Does the paper replicate the results of previous work? If
yes, leave a summary of the findings (confirm/partially
confirms/contradicts).

RQ4

10 Which dataset(s) the technique is applied on? RQ5

11 Is/Are the dataset(s) publicly available online? If yes,
please indicate their name and links.

RQ5

12 Write down any other comments/notes here. -

No. Question Focus

2.3.3 Data Extraction and Analysis

To answer the RQ1-RQ5 defined in Section 2.3.1 and facilitate the data
extraction process, we used the data extraction form in Table 2.3 to collect
necessary information from the selected studies. This step was conducted
together with the “filtering based on full text”. A Web app was developed
to support this activity (source code available in our replication package

2.3. RESEARCH METHOD 27

[148]) and each paper was manually reviewed by one of the authors.

Given that all extracted information is in free text, we conducted a manual
coding process for our data analysis after the data extraction process. This
step is important for two reasons: 1) the coding of our extracted informa-
tion can produce indexes for easing our effort in locating relevant studies,
especially considering the large amount of studies we have; 2) the differ-
ent terminologies used by the authors can be unified, which is essential for
answering our RQs.

With the data resulting from the data extraction process, we first identified
whether to include the paper by inspecting the answer to No. 12 in Table 2.3
as we asked the inspectors to take notes here if the paper does not pass
the full-text filtering. Then, we identified: 1) the purpose of study (e.g.,
detecting developers’ emotion/sentiment/politeness expressed in software
artifacts), 2) whether the approach has been customized, 3) the tools used,
4) whether the approach is available, 5) the type of opinion mining tech-
nique (e.g., sentiment polarity analysis), 6) whether the tool is applied in
a context different from its origin, 7) & 8) whether the performance of the
approach has been verified, 10) the type of dataset (e.g., GitHub issue com-
ments), and 11) whether the dataset is available. As we found that very
rarely a study was replicated, therefore we did not collect useful information
from No. 9. Not all the information is available for all papers. We used
the processes defined in ISO/IEC/IEEE 12207:2017 International Standard
[15] for the application domain. More specifically, to identify the relevant
process, we compared the purpose of the study to the outcomes, activi-
ties, and tasks of each process defined in the ISO/IEC/IEEE 12207:2017
Standard document and then selected the process which matches the best.
Additionally, we added the option “team management” to the application
domain along with the existing processes in the standard as it is one of the
most popular topics in opinion mining software engineering studies, which
focuses on developers instead of specific development processes.

Papers excluded by second-round filtering were also included in the coding
process, this is to confirm the decision of exclusion based on ICs and ECs as
each paper was inspected by one author. In total, 395 papers were included
in our coding. At first, we selected first 23 papers in our database for the
trial coding (20 out 23 are determined to be included in our study), which
was performed by the first two authors. The rest of the authors participated
in the discussion until agreement was reached. Then, we equally distributed

28 CHAPTER 2. LITERATURE STUDY

other 156 papers to all of the authors, namely on average each author
was assigned to 26 different papers for reviewing. As there are several
open-ended questions to answer during information retrieval (e.g., what the
researchers want to achieve by applying the technique(s)?), to reduce the
duplicate codes written in different ways, we discussed the codes emerged
from the output of this round and unified the phrases expressing same
meanings. Finally, we equally distributed the remaining 216 papers to all
the authors and finished our coding process. The first author double checked
all the coded information and performed the final data organization. While
our coded data already provides extensive useful information, we checked
the original papers for more detailed information if needed when answering
RQ1-RQ5.

To answer RQ6, we inspect the papers proposing or evaluating opinion
mining techniques, as we are more interested in the concerns/limitations
supported by evidence instead of those based on assumptions. Each paper
was manually inspected independently by two of the authors, who extracted
insights when the following criteria were satisfied:

• They should be explicitly indicated in the results, discussions, or con-
clusions.

• They should be relevant to customizing/adopting opinion mining ap-
proaches in software engineering.

• They should be supported by data (namely, those proposed without
evidence should be discarded).

• They should not describe tool-specific optimizations such as parame-
ter tuning.

We merged the concerns/limitations extracted by the authors and discarded
duplicated ones. That is, we removed the same insights from the same pa-
per, but those similar/identical insights were kept if they were extracted
from different papers. The extracted insights were then manually catego-
rized based on topic similarity.

2.4 Results
The following section discusses the results of the literature review per re-
search question.

2.4. RESULTS 29

2.4.1 RQ1: In which software engineering activities has opin-
ion mining been applied?

For RQ1, we categorized and summarized the papers that apply opinion
mining to software engineering activities.

Table 2.4: Software engineering activities in which opinion mining is applied.

Design Definition Process

Assessing techniques/services for
system implementation

[P99], [P166], [P66], [P62], [P14]

Knowledge Management Process

Identifying developers’ assumptions
/ rationale from communication

[P95], [P9]

Mining usage knowledge regarding
techniques

[P151], [P182], [P3], [P169],
[P167], [P43], [P94]

Quality Assurance Process

Evaluating software quality from
crowd source

[P145],[P61]

Evaluating general user satisfaction [P177], [P112], [P60], [P37], [P10],
[P176], [P35], [P174]

Evaluating user satisfaction toward
specific product aspects

[P152], [P119],[P48], [P29],
[P185], [P168], [P51], [P107],
[P75], [P92], [P180], [P88], [P50],
[P105], [P121], [P98], [P103],
[P144], [P53], [P124], [P58],
[P11], [P143], [P102], [P181],
[P183], [P63], [P85]

Identifying issues / requests from
developer discussions / issue re-
ports

[P160], [P134], [P118], [P83],
[P38]

Activity Relevant Papers

Continued on next page

30 CHAPTER 2. LITERATURE STUDY

Table 2.4: Software engineering activities in which opinion mining is applied.
(continued)

Identifying issues / requests/other
information from user feedback

[P114], [P136], [P153], [P108],
[P135], [P55], [P25], [P33], [P87],
[P140], [P162], [P46], [P56],
[P171], [P45], [P150], [P65], [P76],
[P90], [P117], [P115], [P77], [P13],
[P22], [P116], [P59], [P6], [P86]
[P125], [P165], [P42], [P184]

Stakeholder Needs and Require-
ments Definition Process

Identifying and evolving require-
ments from other products

[P104], [P101], [P79], [P28]

Identifying and evolving require-
ments from user feedback

[P8], [P80], [P21], [P57], [P139],
[P106], [P30], [P122], [P78],
[P178], [P18], [P7], [P159], [P93]

Identifying requirements from re-
quirement artifacts

[P1], [P89], [P2]

Acquiring deeper understanding of
requirements

[P142], [P155]

Team Management

Relating emotion / sentiment / po-
liteness to performance/behavior.

[P24], [P161], [P110], [P156],
[P147], [P179], [P17], [P129],
[P148], [P47], [P97], [P96], [P32],
[P163], [P64]

Activity Relevant Papers

Continued on next page

2.4. RESULTS 31

Table 2.4: Software engineering activities in which opinion mining is applied.
(continued)

Detecting emotion / sentiment /
politeness expressed in software ar-
tifacts

[P54], [P26], [P52], [P34],
[P141],[P157], [P44], [P172],
[P131], [P5], [P39], [P132],
[P173], [P12], [P82], [P137],
[P49], [P138], [P70], [P91],
[P120], [P130], [P158], [P36],
[P123], [P69], [P113], [P164],
[P31], [P41], [P175], [P40]

Evaluating the trust among team
members

[P149], [P27]

Activity Relevant Papers

Table 2.4 lists all of these categorizes, and the relevant papers belonging to
each activity.

Design Definition Process

These activities aim to provide detailed information about the elements
which can be used to enable the implementation.

Assessing techniques/services for system implementation. Studies
have been conducted to mine opinions from online resources to evaluate the
strengths and weaknesses of techniques/services. Uddin & Khomh [P166]
and Lin et al. [P99] mined Stack Overflow discussions to extract opinions
regarding the pros and cons of adopting certain APIs based on different
aspects (e.g., usability, compatibility). Not limited to only APIs, Huang
et al. [P62] also leveraged Stack Overflow discussions to compare different
techniques (e.g., Ant vs Maven). The aspects they used were automatically
generated by topic modeling techniques, thus being less structured. Ikram
et al. [P66] mined tweets to assist in open source software adoption by an-
alyzing developers’ sentiment regarding various aspects. A similar approach
has been applied by Ben-Abdallah et al. [P14] to online reviews to help
developers select proper cloud service.

32 CHAPTER 2. LITERATURE STUDY

Knowledge Management Process

These activities aim to provide opportunities to reuse the existing knowledge
about development process, skills and system elements.

Identifying developers’ assumptions/rationale from communication.
Li et al. [P95] analyzed discussions from mailing lists to identify assumptions
(e.g., a developer guessing what requirements users might have).

This knowledge can be used to infer the rationales behind certain design
choices. With similar goals, Alkadhi et al. [P9] identified issues, potential
solutions and relevant arguments from development chat messages.

Mining usage knowledge regarding techniques. Several studies have
focused on retrieving knowledge about the usage of APIs from online dis-
cussions. For example, by analyzing Stack Overflow posts, Uddin et al.
[P167] documented how APIs are used and Wang et al. [P169] extracted
tips for using APIs. Being wary of potential bad programming practice
in the automatically retrieved code examples, Serva et al. [P151] identi-
fied those examples associated with discussions having negative sentiment.
Other studies have investigated the negative aspects of APIs. For instance,
Zhang and Hou [P182] identified discussions on API features from forums
which contain negative sentiment. Meanwhile, Ahasanuzzaman et al. [P3]
and Li et al. [P94] identified sentences on Stack Overflow mentioning API
issues and negative caveats, respectively. From a coarse-grained level, Fucci
et al. [P43] classified Stack Overflow posts into 12 types of knowledge, such
as functionality, quality, and example.

Quality Assurance Process

These activities aim to identify the issues which might harm software qual-
ity and ensure quality requirements are fulfilled. It is worth noting that
sometimes the identified issues during these activities can be further pro-
cessed to refine the requirements, which is highly relevant to the activities
in the category “Stakeholder Needs and Requirements Definition Process”.
However, in the studies below, such concrete requirement extraction is not
conducted.

Evaluating software quality from crowd source. Rahman et al. [P145]
extracted opinions about quality or issues of the code from Stack Overflow
posts to recommend insightful comments for source code. Hu et al. [P61]

2.4. RESULTS 33

analyzed user comments of the same apps from different platforms to eval-
uate whether the hybrid development tools, which use a single codebase
across platforms, manage to deliver products with similar user-perceived
quality.

Evaluating general user satisfaction. Studies have been conducted to
understand users’ sentiment toward software products by mining their feed-
back from app reviews [P112, P60], tweets [P177] or free text reviews from
other sources [P37, P10]. Durelli et al. [P35] took a further step to in-
vestigate whether automated tests in mobile apps impact the overall user
satisfaction. Some researchers have investigated the sentiment in support
tickets [P176, P16, P174] to reduce ticket escalations and ensure customer
satisfaction. These studies do not look into customer feedback from a more
fine-grained perspective (e.g., quality aspects, features).

Evaluating user satisfaction toward specific product aspects. Many
studies [P152, P48, P168, P51, P107, P75, P180, P88, P105, P121, P53,
P124, P58, P143, P102, P63, P183, P181] have classified mobile app re-
views into different categories based on the features (e.g., tracking calories),
topics (e.g., app theme) or quality aspects (e.g., usability), and then ana-
lyzed the sentiment users expressed in these reviews to understand whether
the customers are satisfied with the products. A similar technique was also
applied to tweets [P29, P50, P121, P98, P103, P11], Google research re-
sults [P185], SourceForge user reviews [P144], and online technical review
articles [P92]. Keertipati et al. [P85] converted sentiment toward product
features into priorities of mobile app feature development, instead of directly
presenting it.

Identifying issues/requests from developer discussions/issue reports.
Developer discussions in emails [P160] and issue reports [P134, P83, P38]
have been analyzed to identify bugs and feature requests. Munaiah et al.
[P118] inspected code reviews to identify possibly missed vulnerabilities.

Identifying issues/requests/other information from user feedback.
Researchers have proposed classifiers to cluster mobile app reviews into
different categories (e.g., feature request, problem discovery, information
seeking, user experiences) [P136, P153, P119, P108, P135, P55, P33, P87,
P140, P56, P150, P65, P76, P90, P77, P22, P116, P6]. While in dif-
ferent studies the proposed categories can be slightly different, the clas-
sified feedback can be further analyzed to identify potential issues, im-
provement, and new features. A similar approach was applied to tweets

34 CHAPTER 2. LITERATURE STUDY

[P162], user forums [P86, P117] and OSS mailing-lists [P117]. Some
studies have specifically focused on identifying types of issues in app re-
views [P114, P46, P171, P45, P25, P165, P13, P184, P42], while oth-
ers categorize those reviews into different categories concerning quality
(e.g., privacy, usability) or topics without explicitly pointing out the issues
[P59, P115, P125].

Stakeholder Needs and Requirements Definition Process

These activities aim to help define or refine requirements.
Identifying and evolving requirements from other products. Liu et al.
[P104] and Jiang et al. [P79] mined app descriptions to extract require-
ments related information and recommend new features, while Liu et al.
[P101] supported a similar task but only focused on permission-related re-
quirements. Instead of app descriptions, Dalpiaz and Parente [P28] analyzed
app reviews of competitors to suggest new features.
Identifying and evolving requirements from user feedback. Mobile
app reviews are an important source for requirements elicitation. Several
studies have mined app reviews to extract either functional or non-functional
requirements [P21, P139, P106, P30, P78, P159]. Similar techniques were
also applied to reviews in the format of tweets [P8, P57, P122, P178, P7,
P80], Facebook posts [P7], peer-to-peer online review site [P18], and feature
requests on SourceForge [P93].
These activities differ from those to “identify issues/requests/other informa-
tion from user feedback”, as the latter do not aim at eliciting requirements,
but rather at assessing the quality of the currently implemented ones.
Identifying requirements from requirement artifacts. Kurtanovic and
Maalej [P89] trained a classifier to categorize requirements into functional
and non-functional (usability, security, operational, performance). Abad
et al. [P2] proposed an approach to extract text from requirements and
identify the non-functional requirements related to usability, operability, and
performance. They also implemented a prototype ELICA as a mobile app
and conducted a case study to illustrate how it might work in real-life
scenarios [P1].
Acquiring deeper understanding of requirements. Shi et al. [P155]
created an approach to classify sentences in feature requests into six dif-
ferent categories (i.e., intent, explanation, benefit, drawback, example, and

2.4. RESULTS 35

trivia). Portugal and do Prado Leite [P142] used sentiment analysis to
extract interdependencies among non-functional requirements, focusing on
the relationship between the usability-related requirements as well as the
requirements of other quality attributes.

Team Management

These activities aims to understand developers’ behavior and performance.

Relating emotion/sentiment/politeness to performance/behavior. The
relationship between developers’ feelings and their performance or behavior
has been widely studied, including the impacts of developers’ sentiment,
emotions, and attitudes on bug/issue fixing efficiency [P179, P129, P32,
P64], build success of continuous integration [P161], issue reopening [P24],
routine change [P147], activeness of participation [P47, P96], likelihood of
introducing bugs [P163], leadership [P17], and productivity [P110, P97].
Reversely, the impact of refactoring activities [P156] and user feedback
[P148] on developers’ sentiment were also studied.

Detecting emotion/sentiment/politeness expressed in software arti-
facts. Several researchers have looked into the feelings of developers ex-
pressed in various software artifacts. For example, the sentiment polarity
detection (i.e., identifying whether a developer is expressing positive or neg-
ative feelings) was applied to code review comments [P12, P138, P137],
emails [P54, P137, P39, P91, P164, P41, P40, P5, P49], issue reports
[P54, P31, P34, P82, P137, P130], commit messages [P52, P157, P70,
P69], commit or pull request comments [P158, P141], requirements doc-
uments [P175], and project reports [P113]. Emotions, such as anger, joy,
and fear, were detected in issue reports [P44, P131, P132, P120, P31] and
GitHub comments [P172, P173, P123]. Specifically, Elbert et al. [P36]
detected confusion in code reviews. The politeness of developers was also
evaluated in issue reports [P131, P31, P130].

Evaluating the trust among team members. Sapkota et al. [P149] and
Maldonado da Cruz et al. [P27] proposed new approaches for estimating
trust between developers, leveraging developer interactions and sentiment
embedded in pull request or commit comments.

36 CHAPTER 2. LITERATURE STUDY

2.4.2 RQ2: What publicly available opinion mining tools have
been adopted/developed to support these activities?

To answer this RQ, we list all the publicly available opinion mining tools we
found in the subject software engineering studies. We classify these tools
into two major categories: 1) tools for sentiment polarity/emotion/polite-
ness/trust analysis, and 2) tools for artifact content analysis. It is worth
noting that while some of these tools are not specifically designed for pro-
cessing software-related tasks, they are widely used by software engineering
researchers. We consider a tool as designed for SE data if it was proposed
and evaluated on artifacts generated during software development (e.g.,
developers’ discussions, documentation) by the original authors.

Sentiment polarity/Emotion/Politeness/Trust Analysis

Table 2.5: Opinion mining tools for sentiment polarity/emotion/polite-
ness/trust analysis. “*” denotes commercial tools.

Sentiment Polarity Detection

SentiStrength [264] No social media texts
NLTK [118] No social media texts
Stanford CoreNLP [243] No movie reviews
Watson Natural Language
Understanding* [13]

No unknown

Microsoft Azure Text Analyt-
ics* [7]

No unknown

TextBlob [12] No unknown
Affin [187] No social media texts
USent [205] No TED talk user comments
Syuzhet [5] No unknown
Pattern [242] No unknown

Technique Designed
for SE

Based on

Continued on next page

2.4. RESULTS 37

Table 2.5: Opinion mining tools for sentiment polarity/emotion/polite-
ness/trust analysis. “*” denotes commercial tools. (continued)

Rosette* [8] No unknown
Aylien* [2] No unknown
Narayanan et al., 2013 [184] No movie reviews
SentiStrength-SE [P74] Yes issue reports
Senti4SD [P19] Yes Stack Overflow posts
SEntiMoji [P23] Yes issue reports, Stack Overflow

posts, code reviews
SentiSW [P34] Yes issue reports
SentiCR [P4] Yes code reviews
SentiSE [10] Yes code reviews

Emotion Detection

LIWC* [6] No unknown
TensiStrength [262] No social media texts
DEVA [P73] Yes issue reports
MarValous [P68] Yes Stack Overflow posts, issue

reports
EmoTxT [P20] Yes StackOverflow posts, issue

reports
NTUA-SLP [33] No social media texts

Politeness Detection

politeness tool [69] Yes Wikipedia and Stack Ex-
change

Trust Estimation

Trust-Framework [P27] Yes GitHub projects

Technique Designed
for SE

Based on

Tools in this category (Table 2.5) are mainly used to analyze the feelings ex-

38 CHAPTER 2. LITERATURE STUDY

pressed by developers. More specifically, sentiment polarity detection tools
predict whether a text contains positive, neutral or negative sentiment. As
these tools have been comprehensively compared and evaluated, we kindly
invite the readers to refer to Section 2.4.4 for more information regarding
their strengths and weaknesses. Emotion detection tools can extract de-
velopers’ emotions from the texts, with different tools being able to detect
different types of emotions. For example, DEVA [P73] and MarValous [P68]
can detect four emotional states (i.e., excitement, stress, depression, and
relaxation), while TensiStrength1 [262] is used to estimate the strength of
stress and relaxation. EmoTxT [P20], instead, can detect whether a text
contains the following emotions: joy, love, surprise, anger, sadness, and fear.
In addition to what EmoTxT [P20] is capable to detect, NTUA-SLP [33]
can also detect if optimism, or pessimism is expressed in the texts, as well
as other emotions, i.e. disgust, anticipation, and trust. While these tools
in general have good performance, several limitations have been reported.
For example, EmoTxT has a relatively low precision and recall for identify-
ing surprise, while NTUA-SLP demonstrated mixed results when predicting
the intensity of the emotions. Other issues include the difficulty of han-
dling negations, irony, and sarcasm (DEVA), processing texts with mixed
emotions (TensiStrength), and training on a balanced dataset (MarValous).
LIWC [6] calculates the percentage of words falling into 90 different di-
mensions and summarize them into four different perspectives: analytical
thinking, clout, authenticity, and emotional tone. However, while LIWC is
easy to use and provides a broader range of social and psychological insights,
the fact of being a commercial software hinders the adaption and further
extention of the tool. Currently, there are not many tools available for mea-
suring the politeness of the text (politeness tool [69]). Unlike other tools
which take as input texts, Trust-Framework [27] takes a GitHub repository
and calculates the trust score among developers. However, the estimated
trust scores have not been verified in real team projects.

1TensiStrength can be used with its online demo. Standalone tools is also available
for free upon request for academic purposes.

2.4. RESULTS 39

Artifact Content Analysis

Table 2.6: Publicly available tools for artifact content analysis.

LDA [39] automatically extracts topics from texts English
documents

TwitterLDA
[299]

automatically extracts topics from texts social me-
dia texts

ARdoc
[P136]

identifies app reviews related to information
giving, information seeking, feature request,
and problem discovery

mobile app
reviews

Ticket-
Tagger
[P83]

classifies issue reports into bug, enhance-
ment, and question

issue
reports

SURF
[P159]

identifies app reviews related to information
giving, information seeking, feature request,
and problem discovery; summarize app re-
views based on topics

mobile app
reviews

MARC 3.0
[P76, P77,
P78]

identifies app reviews related to bug reports
and feature requests; identify topics for func-
tional requests; classify non-functional re-
quests into dependability, reliability, perfor-
mance, and supportability

mobile app
reviews

RE-SWOT
[P28]

analyzes app reviews to suggest new features mobile app
reviews

DeepTip
[P169]

extracts API usage tips Stack
Overflow
posts

POME
[P99]

classifies sentences referring to APIs into
seven quality aspects (e.g., performance, us-
ability) and determine their sentiment polar-
ity

Stack
Overflow
posts

Techniques Functionality Based on

Tools in this category (Table 2.6) are mainly used to identify the topics
or categories of texts from software artifacts. The topics/categories can

40 CHAPTER 2. LITERATURE STUDY

be either automatically generated (LDA [39] and TwitterLDA [299]), or
pre-defined (all the rest). Those tools without pre-defined categories are
borrowed from other domains, while the rest are specifically designed for
software engineering tasks.

LDA [39] and TwitterLDA [299] are based on Bayesian model. Both of these
two tools take a collection of texts as input and output the potential topics
of the texts. However, a drawback would be the necessity of knowing the
dimension of topics in advance. ARdoc [P136], SURF [P159], MARC 3.0
[P76, P77, P78], and RE-SWOT [P28] are the tools for user review analysis.
More specifically, given the user reviews, these tools can be used to classify
the reviews into different categories such as feature request and problem
discovery (ARdoc, SURF, MARC 3.0), associate reviews to different top-
ics (SURF), identify different types of non-functional requirements such as
performance and usability (MARC 3.0), and extract features classified in
strengths, weaknesses, threats, and opportunities (RE-SWOT). While these
tools achieve good performance in classifying app reviews based on their
categories, several limitations exist. For example, the topic categorization
can be coarse-grained (ARdoc). Meanwhile, MARC 3.0 uses only textual
information, ignoring other potentially useful meta information such as star
ratings and submission time of review. Tools like RE-SWOT do not con-
sider the trend over time, hence the users might not know if some issues
have already been addressed. Ticket-Tagger [P83] takes GitHub issues and
label them into different categories including bug report, enhancement, and
question. However, the recall for enhancement is relatively lower than that
of other classes, and there are relatively higher number of false positives for
detecting questions. DeepTip [P169] and POME [P99] both analyzed Stack
Overflow posts. The former extracted tips on API usage while the latter
categories API-related sentences into different quality attributes (e.g., per-
formance, compatibility) and sentiment polarities. While both tools achieve
high precision, POME reported a relatively low recall for identifying quality
attributes.

Extra Information Related to the Opinion Mining Tools

The results presented in this section provide researchers and developers a
reference to the tool they might be able to use in their work. However,
we acknowledge that readers might want to have a better understanding
of these tools. Therefore, we collected the following information from the

2.4. RESULTS 41

original papers proposing these tools: (1) the link to the paper; (2) the link
to the tool; (3) the input of the tool; (4) the output of the tool; (5) the
core technique used in the tool; (6) the advantages of the tool; and (7) the
limitations of the tool. This information can be found in the “supplementary
results” page of our online replication package [148]. These supplementary
results do not include tools for sentiment polarity analysis, as these tools
have the same input and output, and they are extensively compared in the
literature (as shown in Section 2.4.4).

2.4.3 RQ3: How often do researchers evaluate the reliability
of opinion mining tools when they adopt the tools out-
of-the-box?

As using opinion mining tools from other domains without performance
validation might yield unreliable conclusions [P81], we are interested to see
whether software engineering researchers consider addressing this concern
when adopting opinion mining tools developed by others and use them to
analyze their data. Table 2.7 lists the tools adopted by other researchers,
how often they are used in a domain different from the one they have been
designed for, and how often the performance is verified when it is used in
a different domain. Here, a “different domain” refers to the fact that the
type of data in the study is different from that used to customize the tool.
For example, Stack Overflow posts and mobile app reviews are considered
as a different type of data, despite the fact that they both belong to the
“software engineering” domain. In this table, we do not count the cases
when the tools are only used to compare the performance with other tools
and not chosen as the final tool to support software development activities
defined in Section 2.4.1. To obtain the raw data for this RQ (i.e., the list of
papers involved in this RQ and their corresponding performance verification
information), please visit the “supplementary results” page of our online
replication package [148].

42 CHAPTER 2. LITERATURE STUDY

Table 2.7: Number of tools being adopted, used in different domains, and
how often their performance is verified.

SentiStrength [264] 15 15 (2/13)
politeness tool [69] 5 5 (0/5)
LDA [39] 3 3 (0/3)
NLTK [118] 3 3 (0/3)
LIWC [6] 3 3 (0/3)
Senti4SD [P19] 3 3 (1/2)
Stanford CoreNLP [243] 2 2 (0/2)
SentiStrength-SE [P74] 2 1 (0/1)
Watson Natural Language
Understanding [13]

1 1 (0/1)

Rosette [8] 1 1 (0/1)
TwitterLDA [299] 1 1 (0/1)
SentiSE [10] 1 0 (0/0)
Pattern [242] 1 1 (0/1)
Aylien [2] 1 1 (0/1)
Syuzhet [5] 1 1 (0/1)
EmoTxT [P20] 1 0 (0/0)

Tool # Adopted # Used Differently (#
Verified / # Unverified)

As it can be seen from Table 2.7, in most of the cases these tools are used in
a domain different than the one they have been designed for. What is con-
cerning is that very few researchers try to validate whether these tools can
actually produce reliable results in the context of their study. SentiStrength
[264] is the most popular opinion mining tool in our subject papers, and of
the 15 studies using it in a different context only in 2 cases its performance
has been assessed before using it. This is even more problematic since
general-purpose sentiment analysis tools such as SentiStrength have been
shown to be unreliable in the software engineering context [P81].

2.4. RESULTS 43

2.4.4 RQ4: Which opinion mining techniques have been com-
pared in terms of performance and in what contexts?

Table 2.8: Performance comparison of sentiment polarity detection tools.
Underlined tools has the best performance based on the adopted
metric, and tools in bold face are proposed in the literature.

issue reports

SentiStrength, SentiStrength-SE, SentiCR,
Senti4SD, SEntiMoji [P23]

overall accuracy

SentiStrength, SentiStrength-SE, SentiCR, Senti4SD
[P128]

micro-average F1

SentiStrength, Alchemy (Watson NLU), NLTK,
Stanford CoreNLP [P81]

weighted kappa

SentiStrength, NLTK, Watson NLU, Microsoft Text
Analytics API [P84]

weighted kappa

SentiStrength, SentiStrength-SE, SentiSW [P34] overall accuracy
SentiStrength, SentiStrength-SE, NLTK, Stanford
CoreNLP [P74]

overall F1

SentiStrength, SentiStrength-SE, NLTK, Stanford
CoreNLP [P100, P146, P109]

overall accuracy

SentiStrength-SE, Senti4SD, EmoTxT [P72] overall accuracy

Stack Overflow posts

SentiStrength, SentiStrength-SE, SentiCR,
Senti4SD, SEntiMoji [P23]

overall accuracy

SentiStrength, SentiStrength-SE, SentiCR, Senti4SD
[P128]

micro-average F1

SentiStrength, SentiStrength-SE, SentiCR, Senti4SD
[P166]

micro-average F1

SentiStrength, SentiStrength-SE, Senti4SD [P19] overall F1

Compared Tools Adopted Metric

Continued on next page

44 CHAPTER 2. LITERATURE STUDY

Table 2.8: Performance comparison of sentiment polarity detection tools.
Underlined tools has the best performance based on the adopted
metric, and tools in bold face are proposed in the literature.
(continued)

SentiStrength, SentiStrength-SE, NLTK, Stanford
CoreNLP [P100, P146, P109]

overall accuracy

SentiStrength-SE, Senti4SD, EmoTxT [P72] overall accuracy

code reviews

SentiStrength, SentiStrength-SE, SentiCR,
Senti4SD, SEntiMoji [P23]

overall accuracy

SentiStrength, SentiStrength-SE, SentiCR, Senti4SD
[P128]

micro-average F1

SentiStrength, SentiStrength-SE, SentiCR, Senti4SD
[P12]

micro-average F1

SentiStrength, SentiCR, NLTK, Afinn, TextBlob,
USent, Vivekn [P4]

overall accuracy

SentiStrength-SE, Senti4SD, EmoTxT [P72] overall F1

GitHub comments

SentiStrength, SentiCR, Senti4SD, Alchemy (Wat-
son NLU), NLTK, Stanford CoreNLP [P67]

weighted kappa

mobile app reviews

SentiStrength, SentiStrength-SE, NLTK,
Stanford CoreNLP [P100, P146, P109]

overall accuracy

Compared Tools Adopted Metric

2.4. RESULTS 45

Table 2.9: Performance comparison of emotion detection tools. Underlined
tools has the best performance based on the adopted metric, and
tools in bold face are proposed in the literature.

issue reports

TensiStrength, DEVA [P73] average F1

issue reports + Stack Overflow posts (mixed)

DEVA, MarValous [P68] average F1

Compared Tools Adopted Metric

Table 2.8 and Table 2.9 present the performance comparisons of sentiment
polarity analysis tools and emotion detection tools, respectively. It is worth
noting that while EmoTxT [P20] is a tool for emotion detection, the com-
parison in [P72] was made by mapping emotion states to sentiment polarity
(e.g., joy is considered positive). The studies in the table are categorized
based on the data type used in the performance evaluation. The tool with
the best performance is underlined and the metric used is also indicated.
As artifact content analysis tools often deal with different tasks, their per-
formance cannot be directly compared in most of the cases, therefore, no
such comparisons can be found for those publicly available tools.

From Table 2.8 we can see that overall, the tools customized on software
related data usually perform better than tools created for general domains.
While the performance of different sentiment polarity analysis tools is widely
compared on issue reports, Stack Overflow posts, and code reviews, more
attention should be given to GitHub comments and mobile app reviews. The
performance on these two types of data has not been verified for the latest
development of sentiment polarity analysis tool (e.g., SEntiMoji).

While an overall performance comparison result is given in the table, in prac-
tice tool users might have specific focus and preference. For example, when
the amount of data is huge, precision might be more important than recall
to avoid noise. Another scenario is when analyzing users’ complaints from
app reviews, a tool which can better identify negative sentiment is preferred.
Therefore, to allow readers to check specific metrics, we have aggregated
the comparison results for different metrics, which can be found on the
“supplementary results” page of our replication package [148].

46 CHAPTER 2. LITERATURE STUDY

2.4.5 RQ5: Which datasets are available for performance eval-
uation of opinion mining techniques in software-related
contexts? How are they curated?

Table 2.10: Datasets available for sentiment polarity/emotion/politeness
detection.

DS1 Ortu et al., 2016
[P133]

JIRA issue comments 4,000 sentences

Data distribution: love (187) / joy (158) / sadness (321) /
surprise (28) / anger (340)

DS2 Ebert et al., 2017
[P36]

Gerrit code reviews 792 comments

Data distribution: confusion (156) / no confusion (636)

DS3 Williams & Mah-
moud, 2017 [P177]

tweets 1000 tweets

Data distribution: negative (493) / positive (359) / frustration
(209) / dissatisfaction (133) / bug report (218) / satisfaction
(182) / anticipation (42) / excitement (131)

DS4 Ahmed et al., 2017
[P4]

Gerrit code reviews 1,600 comments

Data distribution: negative (398) / non-negative (1202)

DS5 Calefato et al., 2018
[P19]

Stack Overflow posts 4,423 posts

Data distribution: positive (1527) / negative (1202) / neutral
(1694)

DS6 Novielli et al., 2018
[P127]

Stack Overflow posts 4,800 posts

Data distribution: love (1,220) / joy (491) / anger (45) / sadness
(882) / fear (230) / surprise (106) / neutral (2,841)

DS7 Islam & Zibran, 2018
[P73]

JIRA issue comments 1,795 comments

Data distribution: excitement (411) / stress (252) / depression
(289) / relaxation (227) / neutral (616)

Dataset ID Presented by Data Type Data Scale

Continued on next page

2.4. RESULTS 47

Table 2.10: Datasets available for sentiment polarity/emotion/politeness
detection. (continued)

DS8 Ding et al., 2018
[P34]

GitHub comments 3,000 comments

Data distribution: positive (597) / negative (405) / neutral
(1,998)

DS9-1 Lin et al., 2018 [P100] mobile app reviews 341 sentences

Data distribution: positive (186) / negative (130) / neutral (25)

DS9-2 Lin et al., 2018 [P100] Stack Overflow posts 1,500 sentences

Data distribution: positive (178) / negative (131) / neutral
(1,191)

DS10 Kaur et al., 2018
[P84]

JIRA issue comments 500 comments

Data distribution: positive (109) / neutral (226) / negative (53) /
contradictory (112)

DS11 Imtiaz et al., 2018
[67]

Github comments 589 comments

Data distribution: [politeness] polite (194) / neutral (395);
[sentiment polarity] positive (93) / neutral (419) / negative (73)
/ sarcasm (4)

DS12 Sapkota et al., 2020
[P149]

Github comments 616 comments

Data distribution: strongly positive (23) / weakly positive (251) /
neutral (194) / weakly negative (126) / strongly negative (22)

Dataset ID Presented by Data Type Data Scale

We present the datasets that can be used by researchers to evaluate or
customize opinion mining techniques for software engineering tasks. More
specifically, we list in which paper the dataset was presented, which type
of dataset were used, the number of data points in the dataset, the cate-
gories used in the dataset, and the number of data points falling into each
category. We separate these datasets based on what purpose they can be
used for: 1) datasets for sentiment polarity/emotion/politeness detection
(Table 2.10), and 2) datasets for sentiment artifact content analysis (Ta-
ble 2.11). If several datasets are presented in one paper, their dataset ID
would be formatted as “DSN-X”, where X denotes the index of the dataset

48 CHAPTER 2. LITERATURE STUDY

in the paper (e.g., DS9-1 refers to the first dataset in paper #9). It is worth
noting that we do not include datasets whose download link is no longer
valid or whose access needs to be requested to the authors. The original
paper of DS1 presents three groups of data, all with manually annotated
emotions. However, in the first two groups of the data, only raw annota-
tions were given (i.e., emotions assigned by different annotators) and the
conflicts were not resolved. Therefore, here we only include the data in
group 3 in which the conflicts were addressed by the authors.

Table 2.11: Datasets available for sentiment artifact content analysis.

DS13 Chen et al., 2014
[P22]

mobile app reviews 12,000 sentences

Data distribution: informative (4212) / non-informative (7788)

DS14 Maalej et al., 2016
[P108]

mobile app reviews 4,400 reviews

Data distribution: bug reports (378) / feature requests (299) /
user experiences (737) / ratings (2721)

DS15 Williams & Mah-
moud, 2017 [P178]

tweets 4,000 tweets

Data distribution: bug reports (1,061) / user requirements (949)
/ others (1,990)

DS16 Liu et al., 2018 [P101] mobile app
descriptions

923 sentences

Data distribution (related app permission): contact (208) / record
(151) / location (564)

DS17 Jha & Mahmoud,
2018 [P77]

mobile app reviews 2,912 reviews

Data distribution: bug report (1,340) / feature request (801) /
other (771)

DS18-1 Jiang et al., 2019
[P79]

mobile app
descriptions

533 sentences

Data distribution: dataset labeled with features; statistics not
available here due to the large number of features

Dataset ID Presented by Data Source Data Scale

Continued on next page

2.4. RESULTS 49

Table 2.11: Datasets available for sentiment artifact content analysis.
(continued)

DS18-2 Jiang et al., 2019
[P79]

mobile app
descriptions

2,152 sentences

Data distribution: feature (1,073) / no feature (1,079)

DS19 Fucci et al., 2019
[P43]

API documentation
pages

100 pages

Data distribution: functionality (89) / concept (29) / directives
(41) / purpose (28) / quality (17) / control (27) / structure (24)
/ patterns (22) / codeExamples (36) / environment (16) /
reference (12) / nonInformation (23)

DS20 Jha & Mahmoud,
2019 [P78]

mobile app reviews 7,100 reviews

Data distribution: dependability (1,252) / usability (1,576) /
performance (202) / supportability (677) / miscellaneous (4,024)

DS21 Wang et al., 2019
[P169]

Stack Overflow posts 6566 para-
graphs(Para)
/ 11,379 sen-
tences(Sent)

Data distribution (whether containing API tips): Tip-Para (1,101)
/ No Tip-Para (5,465) / Tip-Sent (1,110) / No Tip-Sent (10,269)

DS22 Khan et al., 2019
[P86]

Reddit forum posts 712 statements

Data distribution: Feature (46) / Claim-Supporting (211) /
Claim-Attacking (129) / Claim-Neutral (175) / Issue (68) /
alternative (80)

DS23 Lin et al., 2019 [P99] Stack Overflow posts 2,165 sentences

Data distribution: community (13) / compatibility (87) /
documentation (71) / functional (411) / performance (56) /
reliability (87) / usability (230) / none (1,138)

Dataset ID Presented by Data Source Data Scale

Most of the datasets included have been manually labeled by at least two
evaluators, however, how conflicts were resolved varies. DS1, DS14, DS18-
1, DS18-2, DS20, and DS21 were labeled by three evaluators, a label was
assigned only when at least two of them agreed, thus no extra process was
needed to resolve the disagreements. Similarly, DS5, DS6, DS13, DS15,
and DS17 were also labeled by three people, but when conflicts emerged

50 CHAPTER 2. LITERATURE STUDY

after labeling, a majority voting criterion was applied. It is worth noting
for DS5, if opposite labels were provided, the corresponding data point
was discarded. DS2, DS4, DS7, DS8, DS11, and DS16 were labeled by
4, 3, 3, 2, 2, and 2 evaluators, respectively. Discussion sessions were held
afterwards to determine the final labels for those data points with conflicted
labels. DS2 also discarded those data points on which no agreement could
be reached. For DS9-1, DS9-2, and D23, each data point was labeled by
two people. When there was a disagreement, the final label was decided
by a third person. Similarly, DS19 were labeled by two Ph.D. students,
and the conflicts were resolved by two of the authors other than the two
students. Four evaluators labeled each data point of DS10, and the dataset
used the label “contradictory” to annotate the conflicts. For DS12, the first
100 data points were labeled by two people, as the agreement was reached,
the remaining data points were labeled by only one person. We are not
able to identify how conflicts were resolved for D3 and D22, while we know
that these datasets ware labeled by two evaluators. For D22, the authors
mentioned that a guideline (publicly available online) was given to minimize
disagreements.

2.4.6 RQ6: What are the concerns raised or the limitations
encountered by researchers when using/customizing opin-
ion mining techniques?

In this RQ, we discuss the concerns and the limitations of using and cus-
tomizing opinion mining tools for software engineering tasks. Meanwhile,
we discuss the potential directions to address these issues.

Using/Customizing tools for sentiment polarity/emotion/politeness/trust
analysis

We identify the following concerns/limitations and potential solutions:

Tool performance is often unsatisfactory. Researchers have found that
when applying sentiment polarity and emotion analysis tools on software-
related data, the accuracy of their output is often unsatisfactory when
the domain of application is not the one the tools have been designed
for [P100, P81, P182, P148, P67, P84]. What is more concerning is that
these tools even do not agree each other, meaning the results or conclusions
might change by applying different tools on the same data [P81]. Similar
issues also hold for emotion analysis tools [P170] and politeness detection

2.4. RESULTS 51

tools [P67] developed in other domains. Therefore, we recommend that
when adopting opinion mining tools designed for non-software engineering
contexts, researchers carefully evaluate the reliability and suitability of these
tools, as suggested by [P100, P128].

One common reason for sentiment polarity misclassification is the domain-
specific vocabulary [P16, P50, P126]. For example, the occurrence of the
word “issue” from issue trackers might mislead the general-domain senti-
ment analysis tools and the predictions tend to be more negative than it
should be. A possible solution is to tune the dictionary to include more
domain-specific vocabularies [P16] or train on software engineering data
[P177, P4]. Currently, there is a lexicon for emotional arousal in software
engineering [P111], which can be considered when customizing emotion
detection tools for software-related tasks. SentiStrength-SE also provides
a list of domain-specific terms containing no sentiments in software engi-
neering context [P74], which has been proven more effective than general-
domain dictionaries when identifying sentiment polarity in software-related
contexts [P71]. Another challenge is the detection of irony and sarcasm
[P73, P50, P166, P74]. Islam and Zibran [P74] pointed out that a poten-
tial solution is “combining the dictionary-based lexical method with machine
learning”, as done in other domains. The existence of decreasing compara-
tive terms (e.g., little problems) often poses challenges for natural language
processing based techniques [P75].

Tool performance varies on different data. Even within the software
engineering domain, different datasets can still result in unstable perfor-
mance of sentiment polarity analysis tools [P100, P23, P166]. Similarly,
the agreement of the predictions produced by different tools also vary on
different datasets [P72]. Moreover, even when the data are extracted from
the same domain, classifiers might still achieve different performance for
different types of text. For example, when detecting confusion in code
comments, the comment types (i.e., inline and general comments) can im-
pact the precision and recall [P36]. Therefore, especially in the case of
supervised techniques, it is recommended to leverage datasets from the
same data source on which it will be applied when training an approach
[P128]. Another fact worth noting is that when extracting emotions, the
results are more reliable on sentences expressing “joy” (compared to on sen-
tences expressing “anger”) and on team-level aggregated texts (compared
to individual texts) [P170].

52 CHAPTER 2. LITERATURE STUDY

Retraining a tool with software-related data requires substantial ef-
fort. As opinion mining tools often do not perform well in software en-
gineering contexts, researchers sometimes retrain existing approaches with
software-related data. However, manually building a training set for super-
vised approaches (e.g., those based on deep learning) can be exhausting
and it does not guarantee that the retrained approach will get better per-
formance [P100]. However, researchers have found that training the model
with a mixture of software-related and unrelated data can be a solution: pre-
training the approach with data from other domains (social media [P23],
Google News [P15], Wikipedia English [P146]) can significantly improve the
performance.

Neutral sentiment is difficult to identify. Researchers have found that
often neutral texts are mistakenly classified as positive or negative, while
the opposite occurs much more rarely [P100]. Shen et al. [P154] confirmed
that both machine learning approaches and lexicon & rule-based approaches
have difficulties in correctly identifying neutral texts. Therefore, when eval-
uating the performance of a sentiment polarity analysis tool, the dataset
containing only positive and negative sentiments are insufficient, since the
real challenge comes when neutral items are part of the dataset [P100]. Ap-
plying some balancing techniques (e.g., oversampling and undersampling)
might to a certain extend improve the low performance caused by dominant
neutral texts [P15, P109].

Human created gold set for tool customization/evaluation may be
unreliable. When creating datasets for tool customization or evaluation,
one issue is that sometimes there are no clear guidelines, thus the gold
set might contain some noise (e.g., “bug report” is mistakenly labeled as
negative) [P128, P67]. Another issue is subjectivity during data labeling.
Studies have found that when it comes to GitHub comments, people have
low agreement regarding sentiment and politeness [P67]. Moreover, it is
easier for evaluators to agree on emotions like love and sadness than others
[P120]. Therefore, clear guidelines are needed for the labeling process and
it is necessary to distinguish the objective report of facts (e.g., there is a
bug) from the affective state expressed in the text [P128].

Sentiment polarity is not enough for capturing the attitude. Negative
lexicons can also express positive attitudes (e.g., people apologizing for not
being able to provide further help shows empathy towards others) [P126].
Therefore, when possible, capturing affective states instead of sentiment

2.4. RESULTS 53

polarity might provide more fine-grained information. However, researchers
have also highlighted the increased difficulty in identifying affective states
compared to only identifying sentiment polarity [P154].

User ratings are not always in line with the sentiment expressed. In
app review analysis, user ratings are not reliable as a proxy for the user
sentiment. While the reviews with one or two stars are negative in most of
the cases, reviews with high ratings may also contain issues [P114]. The
sentiment expressed in the reviews can be more accurately captured by
sentiment analysis tools than star ratings [P107].

Using/Customizing tools for artifact content analysis

We identify the following concerns/limitations and potential solutions:
Single data source may not be enough for mining user feedback. Re-
searchers have found that tweets provide more objective opinions related
to apps compared to reviews on app stores [P121]. Besides, software com-
panies often use social media to collect bug reports and feature requests.
Thus, tweets, especially those from company support accounts can be a use-
ful source for mining opinions about software products [P136]. Meanwhile,
most of the reviews do not contain valuable or actionable information for
researchers to improve their apps [P98]. Therefore, it is suggested to look
into different data sources to gather more comprehensive feedback.

The artifact content can belong to multiple categories. During data
labeling, researchers have found that a small portion (around 1.1%) of user
reviews are related to more than one type of requirement [P106]. Thus,
when researchers need to customize an approach, multi-class classification
might be necessary. As a workaround, splitting the text into multiple parts
(e.g., sentences) has also been adopted [P106].

Data for training is often unbalanced. When training a classifier for
identifying various types of user requests, classifiers usually perform badly on
the minority types [P87, P106, P93]. Using both project-specific keywords
(e.g., those mined from project description and unlabeled user requests)
and non-project-specific keywords (e.g., those derived from requirements
ontologies and taxonomies) as features for training classifiers can improve
the performance to a certain extent [P93].

The quality of datasets affects the performance of the automatic ap-
proach for classifying user reviews. If the size of the training set is small,

54 CHAPTER 2. LITERATURE STUDY

traditional machine learning approaches outperform deep learning [P162].
Meanwhile, when only the data with highly confident labeling (i.e., two
evaluators agree on the same class) are used, the performance of machine
learning approaches also improve in review classification [P87]. This indi-
cates the importance of the balance between quantity and quality of the
training set. Another important factor is the annotation guide, when cat-
egory definitions are misunderstood or apparently have similar meanings,
misclassification is more likely to happen [P56].

Same words can be used to identify different topics/attributes. When
identifying quality attributes mentioned in app reviews, same keywords
might correspond to different attributes (e.g., the “fast” in “fast loading”
refers to performance, while the “fast” in “the app is easy and I can do
things fast with it” is more related to usability) [P75]. A potential solution
could be “analyzing keywords more than one term” [P75, P25, P46]. For
example, using both bi-grams and tri-grams as features to train classifiers
might help correctly classify “fast loading” as performance and classify “do
things fast” as “usability”. However, this does not guarantee same phrase
will not convey several different meanings [P46].

The various choices of vocabulary negatively impact the performance
of user review classification. Different users might use different keywords
and linguistic patterns to explain the same issue, which can lead to review
misclassification [P25]. One potential way to address this issue is to include
more instances of reviews in the training set [P25]. At the same time,
errors of spelling and grammatical structure and non-standard sentences
can also affect the performance [P80], which can be addressed by adding
spell checker during preprocessing [P56]. Meanwhile, there are vocabulary
mismatches between different populations (e.g., the technical vocabulary
used by developers vs. informal lexicon in the reviews [P25, P105]).

The information provided by users can become invalid due to software
evolution. Researchers have noticed that some reviews become outdated
as they describe already removed features or technologies used by the apps,
and a potential way to solve this issue is to correlate reviews with the app
change logs [P116].

Data provided by the source can be incomplete. App reviews provided
by Google Play Store are incomplete, and researchers have found that using
incomplete reviews might bias the findings. It is recommended to collect
user reviews continuously for a long time period [P125].

2.5. DISCUSSION 55

Sentences discussing the interested subjects can be hard to locate.
When mining opinions for APIs, the precision drops when the API mention
is more than one sentence away from the related opinions, or several APIs
are mentioned together [P166]. For the former, it is recommended also
considering four surrounding neighboring sentences as well [P182].

2.5 Discussion

In this section, we discuss the replicability issue of these studies we spotted
during the analysis of 185 papers. Additionally, we point out the potential
directions for future work.

2.5.1 Replicability of Selected Studies

During our study, we spotted a few issues which might hinder the replica-
bility of opinion mining-related software engineering studies. First of all, if
we take a look at techniques in Section 2.4.2, we can easily find that there
are much more tools available for sentiment polarity and emotion detec-
tion than artifact content analysis, while the latter is also widely used in
software engineering activities (Section 2.4.1). Indeed, lots of proposed ap-
proaches for artifact content analysis are not open-source, which also leads
to the fact that researchers are often unable to compare their approach with
relevant ones (Section 2.4.4). Besides, when we extracted available tools
and datasets, we found many links in the papers to be invalid, in partic-
ular when those artifacts were hosted on personal homepages. Thus, it is
recommended to store the artifacts on reliable third-party services such as
Zenodo2, Figshare3, and GitHub4. Moreover, the artifacts provided in the
paper often lack proper documentation, which makes it hard to comprehend
the resources.

2.5.2 Impact of One-Round Snowballing

As snowballing is a very expensive activity, iterative snowballing is rarely
performed. However, only conducting a single snowballing round is a threat
to the completeness of the relevant primary studies we identified. Therefore,

2https://zenodo.org
3https://figshare.com
4http://github.com

https://zenodo.org
https://figshare.com
http://github.com

56 CHAPTER 2. LITERATURE STUDY

to have a basic idea how many papers we might miss in our study, we ran-
domly sampled 10% of the selected papers (i.e., ⌈114∗0.1⌉ = 12) obtained
from the first snowballing round and conducted a second-round backward
and forward snowballing. After removing the papers already collected in our
previous selection process, we got 387 studies (denoted as Set 1). Also, we
randomly took 10% of the secondary studies abandoned during our paper
selection after first-round snowballing (i.e., ⌈11 ∗ 0.1⌉ = 2) and inspected
whether the cited papers in these studies can be a potential primary study
in our literature review. This leads to 24 new studies (denoted as Set 2).
We followed the same process as described in Section 2.3.2 to filter these
411 papers based on title and abstract. As a result, we found that 26 studies
(25 from Set 1 and 1 from Set 2) might fit into our study scope. The list of
papers before and after filtering can be found in the “supplementary data”
page of our replication package [148]. When inspecting these 26 papers,
we found that 12 are obtained by snowballing a single paper. This fact
indicates that if we miss a study addressing a specific issue when conduct-
ing keyword-based searching, even if we can include it in the first-round
snowballing, we might still miss many relevant studies. By inspecting the
venues of these 26 papers, we found that 11 were not published in software-
specific conferences or journals, which made them less likely to be relevant
for software engineering researchers.

This result suggests that iterative snowballing plays an important role in
the completeness of selected primary studies. However, many databases
currently do not provide a convenient way for automatically collecting the
papers during snowballing. We acknowledge this common issue in literature
reviews, and we would recommend that the search engines could provide an
easy way for researchers to download the citing and cited papers. Mean-
while, our result is only based on a small set of samples, we are not sure
if performing snowballing on the rest of the studies will lead to similar
amount of new papers, especially when we had the rather extreme case
that one paper alone introduced 12 new relevant studies. We would also
recommend that future researchers working on literature reviews could con-
duct similar sampling to provide more quantitative insights on the impact
of multi-round snowballing. While our study might not include all relevant
studies, the research questions we investigated are not highly dependent
on the completeness of the samples. Instead, we believe that given the
large number of papers included and the in-depth analysis of these studies,
our literature review can still provide valuable information regarding opinion

2.6. THREATS TO VALIDITY 57

mining in software development.

2.6 Threats to Validity
Wohlin et al. [279] list the potential threats researchers might face during
software engineering research.

Threats to construct validity concern the relation between theory and
observation. We only select papers indexed in our chosen databases. There
might be relevant studies in other databases, however, we have included
most popular ones. Besides, including search engines like Google Scholar
might introduce a large amount of noise including not peer-reviewed work
and low-quality papers. Another threat is that the search string might not
cover all the studies which fit in our search scope. This is mitigated by our
backward and forward snowballing process. We only conducted one-round
snowballing, which might still miss some relevant papers. Nevertheless,
snowballing requires huge amount of human effort, and conducting a sec-
ond round can be impractical. We believe that most relevant studies were
included based on the expertise that the authors have in this domain. More-
over, the large number of papers included in this study can already bring
rich information to readers and answer the research questions with sufficient
details. Another threat is that we did not apply extra quality assessment
criteria on the primary studies we selected. While quality assessment crite-
ria is sometimes used in literature review studies, many criteria are rather
subjective. As we only selected peer-reviewed papers, many papers with
major design flaws should have been filtered out. However, we acknowledge
that some peer-reviewed studies might still contain significant flaws. Our
in-depth analysis of the primary studies through the lens of various research
questions can mitigate this issue.

Threats to internal validity concern external factors we did not consider
that could affect the variables and the relations being investigated. The
databases we used are constantly indexing more papers, and they function
like black boxes, meaning we are not able to tell whether their search al-
gorithm would change at some point. However, as we take all the results
returned and conducted snowballing, we believe that most relevant papers
are included in our study. Another issue is that papers are dynamically in-
dexed in these databases. We might not be able to replicate the search

58 CHAPTER 2. LITERATURE STUDY

results even if the same search strategy is employed. For example, some
papers might be indexed in the database much later than their real publi-
cation date. Therefore, it is possible to find more papers in the future even
if the publication date range remains unchanged. These factors threat the
replicability of our study.

Threats to external validity concern the generalizability of our findings.
We only focused on opinion mining techniques designed for artifacts writ-
ten in English. While English is used as a “lingua franca” in global software
development [159], we acknowledge that developers might create software
artifacts (e.g., user interfaces, user manuals) in a language other than En-
glish. In fact, researchers have found that industry projects are more likely
to contain comments and identifiers in more than one language compared
to open source software projects [208]. Additionally, developers might com-
municate in other languages as well. As coping with multi-lingual texts
remains one of the key challenges in natural language processing, it would
be interesting to investigate the relevant studies in the future. Besides,
all the selected studies are directly associated with software development
processes or developers. This choice was taken as our goal was assisting
researchers and developers in adopting/customizing relevant approaches in
software development activities.Our paper search was performed until early
2020. We acknowledge that additional opinion mining tools and datasets
have been released [38, 53, 138, 298] and more performance comparisons
have been conducted [282, 53, 190, 42].

Threats to conclusion validity concern the relations between the conclu-
sions and our analyzed data. In our study, each paper was inspected by
one author, and the corresponding coding was verified by the first author
without further examination due to the large amount of studies in our work.
While this did not guarantee the correctness of our coding, we did take
extra caution when writing the paper and re-recheck all studies for which
something was unclear.

2.7 Conclusions

In this study, we conducted a systematic literature review involving 185 pa-
pers related to opinion mining for software engineering. We first presented
fine-grained categories of software development activities in which opinion
mining is applied and described what these activities are. We then sum-

2.7. CONCLUSIONS 59

marized publicly available opinion mining tools in the subject papers and
explained in which context these tools are created. We later investigated
whether the performance of these tools are evaluated when adopted in other
studies, and we found that very few researchers evaluate tool performance
when these tools are used in a domain different from the one they have
been designed for. We also presented the contexts in which these tools are
compared, so that researchers and developers can refer to corresponding
studies to figure out which tool might work the best for their own data.
We next presented 23 publicly available software-related datasets which can
be used to evaluate and customize new opinion mining approaches in the
software engineering domain. In the end, we highlighted the concerns and
limitations researchers and developers face when adopting and customizing
opinion mining tools in software engineering and indicated potential solu-
tions.

2.7.1 Insights for Tool Adoption Practices

Our study is by far the largest literature review regarding opinion mining
in software development activities, and the results of RQ6 highlight some
good practices for using opinion mining tools in this context:

• Use the tool trained and/or evaluated on the same data type of the
task.

• When using tools trained on other domain, careful verification of tool
performance is necessary.

• Do not expect 100% accuracy of the opinion mining tools, especially
when texts contain irony and sarcasm.

• When modeling users’ attitude, consider using emotions instead of
sentiment polarities. However, be aware that some emotions such as
joy are easier to capture than others.

• When collecting users’ feedback, aggregate the information from var-
ious sources (e.g., twitter, mobile app stores).

• When analyzing users’ reviews, give more weight to the sentiment
expressed in the reviews than user ratings, and also pay attention to
the validity of the reviews (whether the information is outdated).

60 CHAPTER 2. LITERATURE STUDY

2.7.2 Directions for Future Work

Given the issues we identified for using existing opinion mining tools for
software engineering tasks, we list potential directions for future work, with
an aim of advancing this domain.

Opinion mining for other software development activities. While opin-
ion mining has been applied to many software-related tasks, there are still
some areas to which opinion mining has not yet been applied.

An example is the application in the human resource management pro-
cess. Human resource managers and project leaders can mine discussions
in open-source project artifacts to understand developers’ desired tasks and
capabilities, and this information can be considered for recruitment, promo-
tion, and task assignment. Moreover, opinions embedded in user feedback
can be leveraged for some more specific tasks, such as identifying the need
to deprecate certain system elements (corresponding to the disposal process
defined in ISO/IEC/IEEE 12207:2017 International Standard [15]), as well
as selecting the optimal software architecture (corresponding to the archi-
tecture definition process) and data structure (corresponding to the design
definition process).

Productivity enhancement based on monitored developer feelings.
Many studies have investigated the sentiment polarity, emotions, and polite-
ness expressed by developers in software artifacts Section 2.4.1. However,
few of them have converted these insights into actionable items. Future
researchers could investigate how these measured emotions of developers
can be used to enhance productivity. For example, when constant nega-
tive emotions are detected from developers, team managers might need to
help boost developers’ mood and pay more attention to work-life balance.
We would expect controlled experiments to evaluate whether the proposed
actions are effective.

Performance improvement of sentiment polarity analysis. Inspirations
to improve sentiment polarity analysis tools can be distilled from the results
in Section 2.4.6. Researchers can focus on constructing vocabularies for
specific domains, such as issue reports and app reviews. Also, researchers
can integrate several datasets from other domains for pre-training the clas-
sifier. As the performance of sentiment analysis tools varies on different
datasets, it would also be helpful to design a self-adaptive tool which can
adjust the approach based on the type of data it deals with.

2.7. CONCLUSIONS 61

In Chapters 3 and 4, we studied the performance of sentiment analysis
tools in more detail to better understand how performance can be improved
further.

Validation of user feedback. Section 2.4.6 pointed out a challenge re-
searchers face when identifying opinions from user feedback, namely that
many opinions are not valid anymore due to software updates. Therefore, it
is necessary to propose an approach to distinguish still valid opinions from
outdated ones. This is not trivial as many feedback are not associated with
specific versions, therefore, researchers need to rely on other information
such as the published date of the feedback and update logs of software for
the classification.

Fine-grained classification of opinion topics. Researchers have managed
to identify whether users are expressing requests (e.g., [P108, P77]) or de-
scribing issues and extract tips regarding how to use APIs (e.g., [P169]).
However, these classifications are coarse-grained. Given the large amount of
feedback available, it is necessary to further categorize the user feedback in
order to reduce developers’ manual effort. Topic modeling techniques have
been used to address this issue (e.g., [P62]), however, topics automatically
generated by these approaches are sometimes not very meaningful. Some
researchers have already tried to define taxonomies for types of app re-
views [P136]. However, more well-defined taxonomies are needed for other
purposes, such as concrete types of API usage tips. Researchers can then
classify these opinions in a more fine-grained and meaningful level.

62 CHAPTER 2. LITERATURE STUDY

Chapter 3
Transformers and
Meta-Tokenization in
Sentiment Analysis for
Software Engineering

Sentiment analysis has been used to study aspects of software engineering,
such as issue resolution, toxicity, and self-admitted technical debt (Chap-
ter 2). To address the peculiarities of software engineering texts, sentiment
analysis tools often consider the specific technical lingo practitioners use. To
further improve the application of sentiment analysis, there have been two
recommendations: Using pre-trained transformer models to classify senti-
ment and replacing non-natural language elements with meta-tokens. In this
work, we benchmark five different sentiment analysis tools (two pre-trained
transformer models and three machine learning tools) on 2 gold-standard
sentiment analysis datasets. We find that pre-trained transformers outper-
form the best machine learning tool on only one of the two datasets, and
that even on that dataset the performance difference is a few percentage
points. Therefore, we recommend that software engineering researchers
should not just consider predictive performance when selecting a sentiment
analysis tool because the best-performing sentiment analysis tools perform
very similarly to each other (within 4 percentage points). Meanwhile, we

63

64 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

find that meta-tokenization does not improve the predictive performance of
sentiment analysis tools.

3.1 Introduction

The increasing complexity of modern software engineering projects has re-
sulted in software engineering becoming an inherently collaborative process.
To help developers understand and manage software projects researchers
have studied emotions and sentiment in software engineering because ex-
pressions of negative sentiment in software engineering projects could be
used to identify potential problems [149]. For instance, while studying sen-
timent Calefato et al. [45] found that successful questions on StackOverflow
are short, and more importantly, do not express any sentiment, negative or
positive. In a similar vein, Lanovaz and Adams [140] found that negative
posts on the R mailing lists were less likely to be responded to. In addi-
tion to these topics, studies have also investigated sentiment expressed in
software engineering artifacts such as code reviews [17, 40, 207], questions
asked by developers [271] and issues [161, 198]. However, there are many
areas of software engineering in which sentiment analysis can be expected
to be beneficial but has not yet been applied [149]. In this work, we define
sentiment analysis as a classification task in which a piece of text is assigned
to a polarity class (usually positive, negative or neutral).

On the meta-level researchers have also studied how one can effectively
study sentiment in software engineering [123, 189, 190, 38, 55]. These stud-
ies have resulted in several practical recommendations on how one should
use sentiment analysis tools on software engineering data. In this chapter,
we are interested in two recent recommendations, and we seek to verify
them. Through studying these recommendations we seek to further un-
derstand how software engineering researchers can more effectively study
expressions of sentiment in software engineering.

The first recommendation we study in this chapter originates from two
studies of Biswas et al. [38] and Chen et al. [55] who recommend the us-
age of deep-learning-based sentiment analysis tools to classify sentiment in
software engineering texts. However, contradicting the recommendations
of Biswas et al. and Chen et al., Lin et al. [149] found that machine-
learning approaches outperform deep-learning approaches when the size of
the datasets is small. The exact reason for the misalignment between the

3.1. INTRODUCTION 65

recommendations of Biswas et al. and Chen et al. and the work of Lin et al.
is not clear. One possible explanation might be related to different datasets
being used in each of the benchmarks. Alternatively, the differences might
be attributed to the appropriateness of the training of the machine-learning
tools. For instance, Shwartz-Ziv and Armon [237] found that deep-learning
tools do not always outperform machine-learning tools. Fu and Menzies
[89], Pamungkas et al. [202] and Yedida and Menzies [288] studied similar
questions in software engineering. They find that both machine-learning
classifiers (such as SVM) and more simple deep-learning tools can outper-
form more complex deep-learners on various types of data. In this chap-
ter, we take the recommendations to use deep-learners to classify senti-
ment in software engineering texts [38, 55], and the work that finds that
deep-learners do not always outperform non-deep-learning machine-learning
tools [151, 237, 89, 288]. In a robust experimental set-up we seek to verify
the existing recommendation, and we aim to understand how existing prac-
tices and recommendations can be updated to accurately apply sentiment
analysis to software engineering data. Therefore, we pose:

RQ3.1: Do existing deep-learning sentiment analysis models
outperform machine-learning-based sentiment analysis tools?

The second recommendation we investigate in this work is the recommen-
dation of Efstathiou and Spinellis [80] to replace non-natural language in
technical texts with tokens that capture the meaning of non-natural lan-
guage. In this work we refer to this practice as meta-tokenization, however,
this practice is also known as semantic categorization [247]. Text extracted
from social coding platforms, such as GitHub, might contain different types
of non-natural language elements like code-snippets, stacktraces and ref-
erences to pull-requests. Several detection techniques for non-natural lan-
guage in technical texts already exist: Such as NLoN [169], or an approach
authored by Bacchelli et al. [29]. Finally, Efstathiou and Spinellis [80] pro-
poses replacing these non-natural language elements that occur in code
reviews with meta-tokens, where each meta-token replaces a specific type
of non-natural language element. As existing sentiment analysis tools ob-
tain performance scores of 90%, we seek to understand whether a consistent
meta-tokenization approach further improves the performance of sentiment
analysis tools. Therefore we pose:

RQ3.2: How does the replacement of non-natural language el-
ements in sentiment analysis data with meta-tokens affect the

66 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

performance of Sentiment Analysis tools?

To study the two research-questions posed in this work we follow existing
recommendations [189] and we take two gold-standard datasets tailored for
software engineering . We benchmark five state-of-the-art machine-learning
and deep-learning sentiment analysis tools made for software engineering
using these two datasets. To answer RQ3.1, we take each tool and train it
on a train split of the dataset and then evaluate the predictive performance
of the tool on a test split of the same dataset. To ensure the validity of
the results, we ensure the benchmarks are as robust as possible and we
validate the recommendation by comparing the performance scores of the
machine-learning and deep-learning-based tools.

To address RQ3.2 we train sentiment-analysis tools on both the original
version of the dataset, and a version of the dataset that has been processed
such that non-natural language elements identified through a mix of manual
and automated detection techniques have been replaced with meta-tokens.
We then evaluate the predictive performance of each tool after training it
on both versions of each dataset. And we test whether the predictive per-
formance of the tool trained on the meta-tokenized version of the dataset is
higher than on the tool trained on the original version of the dataset.

Based on the experiments we conduct for RQ3.1 we find that there exists a
small but observable performance differences between machine learners and
deep learners. The best-performing machine learner, Senti4SD, outperforms
one of the two evaluated deep-learning tools on one dataset. While on
another dataset both deep learners outperform Senti4SD. However, while
these performance differences exist they are minor, with performance scores
differing by at most four percentage points. Meanwhile, for RQ3.2 we find
that meta-tokenization does not significantly improve the performance of
any of the five sentiment analysis tools evaluated in this study.

Our work has several findings for researchers that aim to apply sentiment
analysis tools to better understand software engineering :

• Predictive performance of deep-learning and machine-learning sen-
timent tools on gold-standard datasets is comparable: performance
differences between tools do not exceed four percentage points.

• The presence of non-natural language elements in the current gold-
standard datasets and the replacement of the non-natural language
elements with meta-tokens does not significantly affect the perfor-

3.2. METHODOLOGY 67

mance of sentiment analysis tools.

This chapter is structured as follows: Section 3.2 describes the used method-
ology, Section 3.3 lists the results, Section 3.4 argues that our chosen
methodology is sound, Section 3.5 discusses the implications of our work,
Section 3.6 discusses threats to validity, Section 3.7 discusses related work,
and Section 3.8 concludes the chapter.

3.2 Methodology
For this study we are interested in the performance of sentiment-analysis
tools. To address RQ3.1 we compare the performance of machine-learning
tools with deep-learning-based tools. Additionally, we address RQ3.2 by
studying the performance of sentiment analysis tools after retraining them
on a meta-tokenized version of a dataset.

3.2.1 Tools & Datasets

Datasets: In line with recent recommendations of Novielli et al. [189] we
select gold-standard sentiment analysis datasets. For this study, we define
gold-standard as the largest and most rigorous datasets in the field of sen-
timent analysis for software engineering. In practice, this means the largest
available balanced datasets have been labeled using theoretical models of
affect by raters that achieve high inter-rater agreement [189]. For this study,
we select the following gold-standard datasets:

• Github gold-standard : As GitHub is one of the most popular open-
source platform, used by developers to work on collaborative software
projects we select the gold-standard dataset authored by Novielli et al.
[189]. This is a balanced dataset of 7,122 items, where 28%, 43% and
29% of posts convey negative, neutral and positive sentiment respec-
tively. Each item in the dataset has been annotated by three authors
using predefined annotation guidelines. The items in the dataset have
been sampled from comments on commits and pull-requests taken
from 90 GitHub repositories that were part of the 2014 MSR Chal-
lenge dataset. [189]

• StackOverflow gold-standard : StackOverflow is a well-studied Q&A
platform used by developers. The dataset of Calefato et al. [43] is
a balanced dataset of 4,423 items (≃ 27% negative, ≃ 38% neutral,

68 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

≃ 35% positive), labeled by several labelers that used predefined anno-
tation guidelines. Additionally, the labelers of Calefato et al. achieved
high inter-rater agreement. The items in the dataset have been sam-
pled based on the presence of affective lexicons from a StackOverflow
dump that covers the timeframe from July 2008 to September 2015.
The sampled items are a combination of questions, answers, and com-
ments. [43]

Tools: To find sentiment analysis tools for this study we use the list of tool
identified by Lin et al. [149]. We select sentiment analysis tools that are
publicly available, have been peer-reviewed, can be retrained, and have been
designed for an application in Software Engineering. This has resulted in the
list of the following four tools: SEntiMoji [55], SentiSW [76], SentiCR [17]
and Senti4SD1 [43]. As the papers included in the literature study of Lin
et al. have been gathered in 2019 it does not include the most recently
released tools. Therefore, we also include a BERT-based transformer tuned
for sentiment analysis published by Zhang et al. [298].

SEntiMoji [55] is a deep-learning sentiment analysis tool based on a sen-
timent analysis tool that was originally designed for Twitter. It has been
trained on Twitter, and is fine-tuned by the authors on Software Engineering
data.

The BERT-based transformers published by Zhang et al. [298] are deep-
learning models that attempt to leverage existing large-scale language mod-
els to classify sentiment in software engineering text accurately. The pre-
trained models are finetuned by the authors on Software Engineering datasets,
and a comprehensive and re-usable replication package is available. To fine-
tune the models, we re-use the replication package provided by Zhang et al.
[298]. In the paper, the authors evaluate four different pre-trained trans-
formers. For this study we select one of the transformers that achieves
competitive scores: Bert.

SentiSW [76] is built to classify the sentiment of issues comments on
Github. The authors of SentiSW use a preprocessing pipeline to process the
input and create TF-IDF vectors, finding that Gradient Boosting Tree [209]
is the most accurate classifier.

SentiCR [17] is a sentiment analysis tool built to analyze code reviews on
Github. It uses a preprocessing pipeline that performs operations such as

1Note that we used PySenti4SD, as this is the more recent version of Senti4SD.

3.2. METHODOLOGY 69

the processing of negations and the generation of feature vectors based on
TF-IDF. Finally, a Gradient Boosting Tree [209] is used to predict the sen-
timent. SentiCR as originally trained by the authors, is suited for binary
classification: Is negative sentiment present yes or no? We retrain SentiCR
using datasets containing both positive, negative, and neutral sentiments,
and as such, we use it for ternary classification (positive, negative, or neu-
tral). The only training parameter we modify is the oversampling of the
minority item. The original authors use a value of 0.5, we set it to auto
such that all classes except the majority class are resampled.

Senti4SD [43] uses a mix of lexicon-based, keyword-based, and semantic
features to process input. Together with these features, the authors of
Senti4SD use a word2vec [178] model and finally train a Support Vector
Machine [62] to classify sentiment.

3.2.2 Evaluating tool performance

For each of the tools studied in this work, we retrain the tool using the
recommendations and procedures described in the paper that introduces
the tool. We train each tool using the selected datasets using a strati-
fied 70%/30% train-test split, as used by previous work [189]. To assess
the performance of the sentiment-analysis tools for RQ3.1, we study per-
formance metrics like precision, recall, and f1. For RQ3.2 we study both
performance metrics and the inter-tool agreement on the test set. Both
performance metrics and inter-tool agreement have been used previously to
evaluate sentiment analysis tools [189]. To reduce the chances of a par-
ticular train/test split introducing a bias we take ten different train/test
splits of each dataset and evaluate the performance of each tool on each
split.

RQ3.1: To answer this research questions we compare the observed per-
formance scores of the best performing machine learning tool with the two
transformer-based deep-learning tools. Because we run 10 train/test runs,
we compare the obtained distributions of performance scores. This com-
parison is made per performance metric (f1, precision, recall) for the macro
averaged scores over the three sentiment polarity classes.

Our null hypothesis for RQ3.1 is the following:

– Hypothesis 1: There is no difference in the predictive performance be-
tween deep-learning and machine-learning models for sentiment anal-

70 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

Table 3.1: Number of non-natural language elements identified in the 100
item sample of each dataset

Item GitHub StackOverflow

Code 17 4
Username 10 3
Url 4 4
Version Number 1 2
Filename / path 1 2
Warning / Error code 2 1
Command 1 -
Hash 1 -
Mail fragment 1 -
Total 38 16

ysis in software engineering.

To test this hypothesis we first apply a Kruskall-Wallis test to see if there is
any difference between the performance scores. If the p-score is lower than
0.05, we apply a set of Dunn’s tests as post-hoc tests: One per dataset
and performance metric [77]. To correct for a false discovery rate we ad-
just p-values using the Benjami-Hochberg procedure (1995). We reject
the hypothesis if the adjusted p-value is lower than 0.05, and confirm the
alternative hypothesis that at least one model has different predictive per-
formance.

RQ3.2: To study whether meta-tokenization improves the ability of senti-
ment analysis tools to predict sentiment we first identify meta-tokens in
the two datasets, and we study whether the usage of meta-tokens improves
accuracy and agreement. The agreement of sentiment analysis tools has
been studied previously in benchmarks [189].

To identify meta-tokens we sampled 100 items from each dataset. This
200-item sample was manually labeled by two authors of the chapter. The
labeling task was to identify, extract, and name all non-natural language
elements. For the labeling task, we define non-natural language elements
as those elements that are not regular text, specifically, we consider class
names that are used as named entities as natural language elements. After
identifying and extracting the non-natural language elements each extracted

3.2. METHODOLOGY 71

Table 3.2: List of tokens, the expressions used to detect them, and the
number of meta-tokens they are replaced with for both datasets.

Type Token # Replacements
Github StackOverflow

Email M_EMAIL 140 9
Username M_MENTION 715 235
Inline Code M_ICODE 89 126
Version Number M_VERSION_NUMBER 342 172
Issue reference M_ISSUE_MENTION 51 -
URL M_URL 368 182

element was labeled with a descriptive name by the labeler. The agreement
between the two labelers was substantial, with a Cohen’s kappa of 0.65.
Any remaining conflicts, and the naming itself, were discussed in a shared
session and any conflicts were resolved. The final extraction and naming of
non-natural language elements are listed in Table 3.1.

To replace the non-natural language elements in the dataset we use the
following procedure: Based on the non-natural language elements identi-
fied (Table 3.1) we manually created a set of meta-tokens. This list is
extended with non-natural language elements that occur in the markdown
documentation of each platform. Each meta-token is a tuple of a regular
expression and a token name. The tokens we use per dataset are listed Ta-
ble 3.2, while the regex rules used to replace these tokens can be found in
the replication package.2 Each document in the dataset is then processed
using these tuples, and each regular expression match is replaced with the
token name. For example, if a code fragment is identified, we replace the
code fragment with the meta-token M_ICODE. We maintain a separate list of
meta-tokens per platform because the markup language used differs slightly
per platform. The total number of replacements per meta-token is listed
in Table 3.2. 22% of the items in the Github dataset contain at least one
meta-token, and 13% of the items in the StackOverflow dataset contain at
least one meta-token.

2The replication package can be found on figshare (https://figshare.com/s/
1dbdf605abb20441b3d8), and for each platform, a notebook with the replacement rules
exists.

https://figshare.com/s/1dbdf605abb20441b3d8
https://figshare.com/s/1dbdf605abb20441b3d8

72 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

To measure the impact of meta-tokenization on predictive performance we
take the median performance score of each tool for each dataset, for each
performance metric, and for each sentiment polarity class. We compare the
median score of that particular tool trained on the dataset, with the median
score of that tool trained on the meta-tokenized version of the dataset.
By comparing the median intra-tool scores we hope to understand whether
meta-tokenization has an impact.

Moreover, we also use a Mann-Whitney Wilcoxon test [173] to compare
intra-tool performance scores for the tools trained on the meta-tokenized
and untokenized versions of the dataset. We use a Mann-Whitney Wilcoxon
test as opposed to Kruskall-Wallis with as post-hoc a Dunn’s test since we
are comparing the two distributions of performance scores for each tool. We
adjust p-values using the Benjami-Hochberg procedure (1995) to adjust for
a false discovery rate.

To further understand the effects of meta-tokenization we compute the
weighted Cohen’s kappa [58] per tool pair per run. We then use a similar
statistical methodology for the predictive performance to study whether
there is a statistical difference between inter-tool agreement for tools trained
on the original version of the dataset and the meta-tokenized version of the
dataset.

For the statistical tests, we use the following null hypotheses:

– Hypothesis 2: There is no difference in the predictive performance
between a sentiment analysis tool trained on a meta-tokenized version
of a dataset vs. the same tool trained on an unmodified version of
the dataset.

– Hypothesis 3: There is no difference in the intra-tool agreement be-
tween sentiment analysis tools trained on the meta-tokenized version
of a dataset vs an unmodified version of the dataset.

For Hypothesis 2 we test the hypothesis for each dataset, tool, and perfor-
mance metric and adjust the obtained p-values accordingly. For Hypothesis
3 we test the hypothesis per tool pair and per dataset and adjust the p-
values over these comparisons. We reject each hypothesis if the adjusted
p-value is lower than 0.05. If Hypothesis 2 is rejected, we confirm the alter-
native hypothesis that there are differences in the predictive performance of
the tool depending on the version of the dataset it is trained on. In the case
that Hypothesis 3 is rejected, we confirm the alternative hypothesis that

3.3. RESULTS 73

Table 3.3: Median performance score for each metric per tool for each of
the ten runs.

Tools

Positive Negative Neutral Macro

P R F1 P R F1 P R F1 P R F1

GH

Senti4SD 0.937 0.906 0.919 0.911 0.887 0.902 0.891 0.924 0.906 0.911 0.906 0.908
SentiSW 0.807 0.802 0.809 0.772 0.649 0.701 0.741 0.836 0.787 0.777 0.760 0.766
SentiCR 0.893 0.842 0.869 0.867 0.695 0.774 0.780 0.915 0.842 0.848 0.820 0.829
Sentimoji 0.941 0.919 0.929 0.907 0.845 0.876 0.872 0.927 0.899 0.907 0.898 0.902
Bert 0.911 0.950 0.929 0.890 0.891 0.887 0.927 0.896 0.906 0.907 0.912 0.908

SO

Senti4SD 0.899 0.920 0.909 0.787 0.842 0.817 0.833 0.779 0.807 0.843 0.846 0.844
SentiSW 0.866 0.886 0.882 0.820 0.712 0.763 0.780 0.836 0.806 0.822 0.812 0.815
SentiCR 0.880 0.906 0.895 0.790 0.731 0.758 0.796 0.814 0.805 0.822 0.819 0.820
Sentimoji 0.923 0.931 0.926 0.842 0.835 0.836 0.839 0.839 0.834 0.868 0.867 0.867
Bert 0.924 0.939 0.930 0.849 0.863 0.853 0.863 0.847 0.851 0.878 0.879 0.878

there are differences in the intra-tool agreement depending on the version
of the dataset they are trained on.

3.3 Results
This section reports the performance of the machine-learning and deep-
learning sentiment analysis tools (RQ3.1). The section also reports the
performance of sentiment analysis tools after retraining them on meta-
tokenized versions of the datasets (RQ3.2). Data availability statement:
The dataset of performance scores of the analyzed sentiment-analysis tools
is publicly available in a Figshare repository.3

3.3.1 Machine learning and Deep learning
Table 3.3 contains the results of the ten runs for each tool on each dataset.
Boldface highlights the best-performing tool per metric. As can be ob-
served, the two deep-learners outperform the machine-learning tool on the
StackOverflow dataset. However, for the GitHub dataset there are instances
where Senti4SD outperforms the deep-learners. When performance differ-
ences exist between the best performing machine-learner and the deep-
learning tools these differences are mostly a few percentage points.

To further understand the differences in performance scores across the tools
Figure 3.1 and Figure 3.2 show violin plots of the performance of the three

3https://figshare.com/s/1dbdf605abb20441b3d8

https://figshare.com/s/1dbdf605abb20441b3d8

74 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

��� ��� ��� ��� ��� ���
�����

��
��
��
��
�

��
��
��

��

��������������������������������������
�����

��������
�������	
���������
����

Figure 3.1: Performance of Senti4SD, Sentimoji and BERT on the GitHub
dataset.

best-performing sentiment analysis tools on the Github and StackOverflow
datasets respectively. The violin plot visualizes the macro-averaged perfor-
mance scores per metric of the 10 runs per tool. As can be observed, the
performance differences between most tools for most metrics on GitHub are
small or hard to distinguish (Figure 3.1). Meanwhile, for the StackOverflow
dataset, the performance differences between the three tools are easier to
see (Figure 3.2).

The p-values for the Kruskall-Wallis tests are all smaller than .001. There-
fore, we compare the performance scores obtained using Dunn’s test. The
P-values of these comparisons are shown in Table 3.4. For the GitHub
dataset the only significant difference is found between Senti4SD and Senti-
moji for recall and f1, and between Sentimoji and Bert for recall. Meanwhile,
for the StackOverflow dataset we find that Bert and Sentimoji are different
from Senti4SD for all performance metrics. Additionally, no statistically
significant differences are found between Bert and Sentimoji.

3.3. RESULTS 75

��� ��� ��� ��� ��� ���
�����

��
��
��
��
�

��
�
��

��
��������������������������������
�������

��������
�������	
���������
����

Figure 3.2: Performance of Senti4SD, Sentimoji and BERT on the Stack-
Overflow dataset.

RQ3.1

Transformer-based models outperform machine-learning tools on the
StackOverflow dataset, while no significant performance differences
are observed for the GitHub dataset. However, the observed perfor-
mance differences between the best-performing machine-learner and
transformer-based model are a few percentage points at most.

3.3.2 Meta-tokenization

Table 3.5 lists the median performance scores per sentiment polarity class
and metric after benchmarking the five tools on the untokenized and meta-
tokenized (mt) versions of the datasets. Each pair of rows corresponds to
a tool and a dataset, and the boldface indicates on which version of the
dataset the tool managed to score higher. In case of a tie, both values are
typeset in bold.

As can be observed in Table 3.5 meta-tokenization does not appear to
greatly affect the predictive performance of the three sentiment analysis
tools. For some classes and for some tools the performance of the tools

76 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

Table 3.4: Table containing the results of the Dunn’s tests for the com-
parison of deep-learners and machine-learners on the macro performance
metrics.

Metric Tools Corrected P-value
GitHub StackOverflow

f1 Senti4SD/Sentimoji .031∗ .010∗

f1 Senti4SD/Bert .629 < .001∗∗∗

f1 Sentimoji/Bert .108 .153
precision Senti4SD/Sentimoji .127 .010∗

precision Senti4SD/Bert .127 < .001∗∗∗

precision Sentimoji/Bert .959 .123
recall Senti4SD/Sentimoji .042∗ .010∗

recall Senti4SD/Bert .909 < .001∗∗∗

recall Sentimoji/Bert .031∗ .127
***: p < 0.001, **: p < 0.01, *: p < 0.05

trained on the meta-tokenized version of the dataset appears to be slightly
higher. However, the difference in performance scores for the tools trained
on the untokenized and meta-tokenized datasets is quite small. SentiCR,
for instance, scores slightly higher on most metrics and classes of the meta-
tokenized version of the GitHub dataset than the untokenized version, how-
ever, these observed differences are minor.

To test whether any significant differences exist between the tools on meta-
tokenized and untokenized versions of datasets, we use the Mann-Whitney
U test to compare the distributions. However, we find that the adjusted
p-values after running the pairwise Mann-Whitney U tests are all 1.0, for
all tools on both datasets. Therefore, we observe no evidence that meta-
tokenization influences predictive performance.

To determine whether meta-tokenization affects the agreement of the sen-
timent analysis tools we compute the weighted Cohen’s Kappa for each
tool pair per run and dataset. The corrected p-values for the pairwise
Mann-Whitney U tests comparing the observed agreement before and after
meta-tokenization are all 0.970 indicating that meta-tokenization does not
affect the agreement of the tools.

3.3. RESULTS 77

Ta
bl

e
3.

5:
Pe

rfo
rm

an
ce

m
et

ric
re

su
lts

of
ru

nn
in

g
th

e
to

ol
s

on
th

e
or

ig
in

al
da

ta
se

ts
an

d
to

ke
ni

ze
d

ve
rsi

on
s

(m
t)

of
th

e
da

ta
se

ts
.E

ac
h

ro
w

sh
ow

st
he

m
ed

ian
pe

rfo
rm

an
ce

sc
or

e.

To
ol

s
D

at
as

et

Po
sit

iv
e

N
eg

at
iv

e
N

eu
tr

al
M

ac
ro

Preci
sion

Reca
ll

F1

Preci
sion

Reca
ll

F1

Preci
sion

Reca
ll

F1

Preci
sion

Reca
ll

F1

Se
nt

i4
SD

G
H

0.
93

7
0.

90
6

0.
91

9
0.

91
1

0.
88

7
0.

90
2

0.
89

1
0.

92
4

0.
90

6
0.

91
1

0.
90

6
0.

90
8

G
H

(m
t)

0.
94

3
0.

90
1

0.
92

4
0.

91
3

0.
88

8
0.

90
5

0.
88

7
0.

92
6

0.
90

6
0.

91
5

0.
90

8
0.

91
1

SO
0.

89
9

0.
92

0
0.

90
9

0.
78

7
0.

84
2

0.
81

7
0.

83
3

0.
77

9
0.

80
7

0.
84

3
0.

84
6

0.
84

4
SO

(m
t)

0.
90

1
0.

91
7

0.
91

2
0.

79
7

0.
84

3
0.

82
0

0.
83

1
0.

78
1

0.
80

6
0.

84
4

0.
84

8
0.

84
6

Se
nt

iS
W

G
H

0.
80

7
0.

80
2

0.
80

9
0.

77
2

0.
64

9
0.

70
1

0.
74

1
0.

83
6

0.
78

7
0.

77
7

0.
76

0
0.

76
6

G
H

(m
t)

0.
80

7
0.

80
0

0.
80

0
0.

76
5

0.
66

1
0.

71
0

0.
75

1
0.

83
0

0.
79

3
0.

77
7

0.
76

4
0.

76
9

SO
0.

86
6

0.
88

6
0.

88
2

0.
82

0
0.

71
2

0.
76

3
0.

78
0

0.
83

6
0.

80
6

0.
82

2
0.

81
2

0.
81

5
SO

(m
t)

0.
86

5
0.

88
3

0.
88

1
0.

81
7

0.
72

0
0.

76
1

0.
78

4
0.

83
8

0.
80

7
0.

82
0

0.
81

1
0.

81
4

Se
nt

iC
R

G
H

0.
89

3
0.

84
2

0.
86

9
0.

86
7

0.
69

5
0.

77
4

0.
78

0
0.

91
5

0.
84

2
0.

84
8

0.
82

0
0.

82
9

G
H

(m
t)

0.
89

7
0.

85
1

0.
87

4
0.

87
8

0.
69

3
0.

77
7

0.
78

3
0.

92
0

0.
84

8
0.

85
3

0.
82

4
0.

83
3

SO
0.

88
0

0.
90

6
0.

89
5

0.
79

0
0.

73
1

0.
75

8
0.

79
6

0.
81

4
0.

80
5

0.
82

2
0.

81
9

0.
82

0
SO

(m
t)

0.
88

1
0.

90
9

0.
89

5
0.

79
5

0.
73

1
0.

76
3

0.
79

9
0.

82
3

0.
80

9
0.

82
6

0.
81

9
0.

82
1

Se
nt

im
oj

i

G
H

0.
94

1
0.

91
9

0.
92

9
0.

90
7

0.
84

5
0.

87
6

0.
87

2
0.

92
7

0.
89

9
0.

90
7

0.
89

8
0.

90
2

G
H

(m
t)

0.
94

1
0.

92
5

0.
93

5
0.

91
2

0.
84

1
0.

87
5

0.
87

2
0.

92
8

0.
90

2
0.

90
9

0.
90

0
0.

90
4

SO
0.

92
3

0.
93

1
0.

92
6

0.
84

2
0.

83
5

0.
83

6
0.

83
9

0.
83

9
0.

83
4

0.
86

8
0.

86
7

0.
86

7
SO

(m
t)

0.
92

5
0.

93
0

0.
92

5
0.

84
1

0.
83

7
0.

83
8

0.
83

9
0.

83
7

0.
83

5
0.

86
8

0.
86

6
0.

86
6

B
er

t

G
H

0.
91

1
0.

95
0

0.
92

9
0.

89
0

0.
89

1
0.

88
7

0.
92

7
0.

89
6

0.
90

6
0.

90
7

0.
91

2
0.

90
8

G
H

(m
t)

0.
92

0
0.

94
0

0.
92

6
0.

92
4

0.
85

7
0.

88
7

0.
90

1
0.

93
8

0.
91

3
0.

91
4

0.
91

2
0.

91
1

SO
0.

92
4

0.
93

9
0.

93
0

0.
84

9
0.

86
3

0.
85

3
0.

86
3

0.
84

7
0.

85
1

0.
87

8
0.

87
9

0.
87

8
SO

(m
t)

0.
90

1
0.

96
5

0.
93

1
0.

85
3

0.
87

4
0.

85
8

0.
89

1
0.

83
4

0.
85

5
0.

88
0

0.
88

1
0.

88
0

78 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

RQ3.2

We conclude, based on the performed benchmarks, that there is
no evidence that meta-tokenization significantly improves either the
predictive performance of sentiment analysis tools or the ability of
sentiment analysis tools to agree.

3.4 Devil’s Advocate
In this work we present negative results: Meta-tokenization does not im-
prove predictive performance or agreement of sentiment analysis tools, and
pre-trained transformers do not always outperform machine learning tools.
Therefore, in this section, we present and answer several questions that
could be raised by a Devil’s advocate concerning the soundness of our
methodology. Each subsection presents a question, a short motivation
for the question, and a response. This section is inspired by the line of
reasoning used by Sidhu et al. [238].

3.4.1 What process was used to label the items in the dataset?
Could bias in the labeling influence the results? Could
bias in train-test splits influence the results?

From the work of Novielli et al. [189] we know that labeling datasets used
to train sentiment analysis tools is important, as datasets should be labeled
using clear and consistent guidelines. Not only does the labeling of datasets
matter, but how a dataset is split into a train and test split might also
influence results.

The two datasets selected for this study, the StackOverflow and the GitHub
datasets, have been labeled using labeling guidelines based on existing the-
ories of affect. Additionally, for both datasets the labeling process was
executed over several rounds, and for each round disagreements were dis-
cussed [43, 189]. This ensures that for both datasets inter-rater reliability is
high, resulting in robust and reliable datasets with a well-operationalized def-
inition of sentiment. By training the tools on these gold-standard datasets
we minimize the chances that ad-hoc labeling, or inconsistent labeling in-
fluences the performance of the tools.

3.4. DEVIL’S ADVOCATE 79

Additionally, each experiment in this study is repeated ten times, each time
using a different random seed for the stratified train-test split. Using this
repetition we avoid that the results are influenced by a single train-test split
or a single initialization of random parameters for one of the tools.To ensure
that the tools are compared on equal grounds, the same train/test split is
used across the tools for each run. By reporting both the median perfor-
mance score, and by doing statistical testing on the obtained performance
scores we aim to obtain results that are sound and reliable. These 10 runs
ensure that for both research questions (RQ3.1 and RQ3.2) the obtained
differences across tools, or as a result of meta-tokenization, are not due to
random effects, or opportune train-test splits.

Response: Given the reliable labelling process on both datasets and our
multiple runs with random train-test splits, our confidence on the RQ1 and
RQ2 results is strengthened.

3.4.2 Don’t sentiment analysis tools already apply preprocess-
ing techniques to handle non-natural language?

If the existing sentiment analysis tools evaluated in this work already apply
techniques to filter out or otherwise preprocess non-natural language the
findings for RQ3.2 might be impacted.

To determine whether the tools benchmarked in this study apply techniques
that might affect the effectiveness of meta-tokenization we analyze the pa-
pers in which the tools were originally described [17, 43, 76, 55, 38]. From
the papers we extract and read the sections in which the preprocessing pro-
cess is described, and we report the steps taken by the tools to process the
input texts. Where needed we also analyzed the available source-code of
the tools, to better understand how the tools pre-process input.

Senti4SD: Uses extensive feature engineering which can be divided into three
categories: generic sentiment lexicon features, keyword-based features and
features based on word embeddings [43]. While computing these features
Senti4SD applies very limited preprocessing. It only replaces all usernames
with the meta-token @USERNAME. However, Senti4SD does not perform any
stemming or lemmatization, nor are stopwords removed. In the paper for
Senti4SD no details are mentioned about the removal of URLs, stopwords
or HTML. However, the authors do mention that the dataset on which
Senti4SD was originally trained is a dataset in which URLs, code snippets

80 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

and HTML tags were removed. This dataset is the StackOverflow gold-
standard dataset.

SentiCR: Uses many different preprocessing steps to process an input item
of text, in total 7 steps are used [17]. In order of execution these are:

1. Expansion of contraction: Expands contractions such as I’m → I am
using a dictionary of 124 commonly occurring contractions.

2. URL Removal : Removes all URLs from the text.

3. Handling of emoticons: Replaces four emoticons with a predefined
token indicating whether the emoticon is positive or negative.

4. Negation pre-processing : Uses NLTK [37] to express a chunk grammar
that can recognize and annotate negations such as “I do not like your
changes”.

5. Word stemming : The stemming of input words with the stemmer of
NLTK.

6. Stop-word removal : Removal of stop-words using a customized list of
stop-words.

7. Code-snippet removal : The removal of code snippets through a list
of predefined keywords, and the removal of all words that are present
in less than three input texts of the train set.

SentiSW: Similar to SentiCR, SentiSW uses a preprocessing pipeline that
contains the following steps in order of execution:

1. Non-English character deletion: The deletion of all non-ascii charac-
ters from the input.

2. Contraction expansion: Similar to SentiCR, however, no mention is
made of the list of contraction used.

3. Code snippet removal : The usage of a GitHub markdown parser to
remove markdown code snippets.

4. URL and quotation removal : Removal of URLs and text enclosed in
quotes.

5. Stop-word removal : Removal of stop-words using a predefined list
provided by StanfordNLP [167].

3.4. DEVIL’S ADVOCATE 81

6. Emoticons and punctuation mark processing : The replacement of
emoticons with tokens indicating whether the emoticon is positive or
negative.

7. Negation marking : The usage of grammar rules to annotate nega-
tions, a predefined list of negation words is used.

8. Word tokenization and stemming : The usage of NLTK to tokenize
and stem words [37].

SEntiMoji: In the paper of SEntiMoji no explicit mention of preprocessing
of input data is made [55]. The one detail that is mentioned is that the
dataset used for the finetuning of SEntiMoji has been processed using meta-
tokens for code, urls and issue references. However, no mention is made
of applying this same preprocessing to input or training data. Through a
manual investigation of the source-code of SEntiMoji we find that some sort
of meta-tokenization is applied on input data. Namely, SEntiMoji replaces
URLs, mentions using @ and URls in input data with meta-tokens.

BERT-based transformers: The paper itself makes no explicit mention of
preprocessing that is applied [38]. However, in the source-code of the ac-
companying replication package we find that the authors use an existing
tokenizer from the huggingface library4. This tokenizer is a SentencePiece
tokenizer, which splits a sentence up into several smaller tokens [135]. How-
ever, this tokenizer does not apply any meta-tokenization.

All studied sentiment analysis tools have different preprocessing pipelines.
Conceptually, SentiCR and SentiSW are most similar, as they both use simi-
lar preprocessing pipelines, with differences in the implementation of certain
steps. SEntiMoji falls between SentiCR and SentiSW as it does apply some
form of meta-tokenization, however, it only applies this meta-tokenization
for a limited number of tokens, as opposed to the meta-tokens identified in
this work. Meanwhile Senti4SD has a very limited preprocessing timeline,
and the BERT-based transformers both have a preprocessing pipeline that
does not remove non-natural language.

Response: If the existing preprocessing applied by the tools influences
the effectiveness of meta-tokenization one would expect to see that meta-
tokenization is effective for Senti4SD and the BERT-based transformers, but
not for SentiCR, SentiSW and SEntiMoji. However, we find no evidence for

4https://huggingface.co/docs/tokenizers/index

82 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

the effectiveness of meta-tokenization for any of the tools. Which allows
us to conclude that the preprocessing steps already executed by the tools is
not comparable to the meta-tokenization performed in this work.

3.5 Discussion
Through the experiments conducted in this work, we observe two differ-
ent findings: We find limited evidence supporting the recommendation
that large-scale deep-learning sentiment-analysis tools outperform exist-
ing machine-learning tools. Additionally, we find no evidence that meta-
tokenization improves the performance of sentiment analysis tools.

3.5.1 Applying Sentiment Analysis Tools to Study Software
Engineering

Improper usage of sentiment analysis tools might impact the replicabil-
ity of studies that use sentiment-analysis tools to derive conclusions [149].
Therefore, existing literature has studied how to apply sentiment analysis to
software engineering data. As a result, there are many different recommen-
dations on how to select and apply sentiment analysis tools. In benchmarks
of general-purpose sentiment analysis tools applied to software engineering
data Jongeling et al. [123] found that general-purpose tools are not accu-
rate. As a result, Jongeling et al. recommend using tools that are designed
for software engineering data and tools that are tailored to the lingo used
by developers. Novielli et al. [189] recommend training sentiment analysis
tools on gold-standard datasets. If no gold-standard dataset is available
for a given context, Novielli et al. [189] recommend using rule-based senti-
ment analysis tools. Additionally, Novielli et al. recommends that sentiment
analysis tools should not be used outside of the platform. For instance, a
tool trained on GitHub data should not be used to predict sentiment on
StackOverflow data. Based on additional benchmarks Uddin et al. [269]
recommends using a supervised tool that combines the output of five state-
of-the-art sentiment tools to achieve a 4% increase in accuracy over the
best-performing standalone tool.

In addition to the recommendations on how to select sentiment analysis
tools, there are also recommendations on how to analyze sentiment in soft-
ware engineering: Novielli et al. [189, 190] recommend that sentiment anal-
ysis tools should always be validated on a robustly labeled sample of the

3.5. DISCUSSION 83

data to ensure the tool is accurate. This process of labeling a small sample
and validating the tool should continue until the tool is sufficiently accurate.
Additionally, Novielli et al. [189] recommend explicitly picking an established
theory of affect and purposefully using sentiment analysis tools that align
with this theory of affect. Finally, Novielli et al. [190] recommend carefully
considering the unit of analysis (sentences vs. documents).

In this chapter, we add a more fine-grained recommendation on how to
select sentiment analysis tools to the body of literature based on our re-
sults for RQ3.1, namely: Given the relatively minor performance differences
between the tools based on machine learning vs. deep learning, which we
include in our benchmark (Table 3.5), we recommend that the tool choice
for sentiment analysis should not solely be based on predictive performance.
Instead, the tool choice should depend on the alignment of the tool with
the chosen theory of affect, domain adaption, and the suitability of the tool
for the given task. In practice, the choice of models bigger in terms of lan-
guage model or tool complexity might not automatically result in a better
performance. Instead, many other aspects are more important to ensure
the validity of obtained results.

The two studied datasets contain items that were sampled from two differ-
ent platforms. This choice is in line with the intention to minimize the risk
of platform or context influencing our results we have opted to use datasets
from two different platforms. Specifically, two platforms were considered:
Github, a collaborative software development platform, and StackOverflow,
a Q&A platform, are used by software engineers to communicate with each
other. However, the language used on these two platforms might differ from
the language used on other platforms. Specifically, it might not be represen-
tative of language used in other software engineering contexts such as the
language used during closed-source development. While most of the publicly
available datasets of developer communication prepared for sentiment anal-
ysis have been derived from open-source projects or StackOverflow [149],
there have been attempts to apply sentiment analysis to contexts, such as
transcripts of meetings [113]. However, in their study the language of the
meetings is German, and the datasets are not publicly available, making it
infeasible to include data such as this in our study.

Suppose such datasets were available, it is not unthinkable that differences
in language usage or communication norms might influence the performance
of sentiment analysis tools. In other contexts, such as the study of Self-

84 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

Table 3.6: The percentage of items per dataset, per polarity class that
contain non-natural language that has been replaced with meta-tokens.

Dataset % Meta-tokens
Negative Neutral Positive

GitHub 12.89% 35.24% 11.38%
StackOverflow 11.65% 15.05% 11.39%

Admitted Technical Debt, it has been found that practices between open-
source and industry differ [291]. Previous studies show that sentiment anal-
ysis tools are sensitive to the dataset and the context or platform on which
they have been trained [189, 190]. Therefore, when transferring sentiment
analysis tools to other contexts one should be aware of the potential limi-
tations and the need to validate and potentially retrain sentiment analysis
tools on the specific context.

3.5.2 Dataset creation and presence of non-natural language

For RQ3.2 we studied the effect of meta-tokenization on two datasets,
GitHub [189] and StackOverflow [43]. During the creation of the datasets
the authors of both datasets made different decisions: According to the pa-
per, Calefato et al. [43] removed code fragments, URLs and HTML from the
text in the dataset. However, in the manual labeling and automatic removal
of non-natural language elements (Tables 3.1 & 3.2) we still identified code
fragments and URLs in the StackOverflow dataset. In the work of Calefato
et al. they used a different approach to remove such elements than the
Regex-based approach used in this work. Specifically, they only removed
multi-line code elements using HTML parsing. In the GitHub dataset [189],
no mention is made of removing any non-natural language elements. This
difference in approaches has replaced a greater number of source-code frag-
ments with meta-tokens in the GitHub dataset than in the StackOverflow
dataset.

Table 3.6 shows how many items were replaced with meta-tokens per sen-
timent polarity class in each dataset. Even though the process with which
both datasets were created was different, the proportion of items with neg-
ative or positive sentiment that contain meta-tokens is similar for both
datasets. However, there are more items with meta-tokens in the GitHub

3.5. DISCUSSION 85

dataset for the neutral class than in the StackOverflow dataset. This dif-
ference in the proportion of meta-tokens in the GitHub dataset is why we
intuitively expected meta-tokenization to work: Without meta-tokenization,
sentiment analysis tools might learn to associate words used in non-natural
language snippets with neutral sentiment. However, even on the GitHub
dataset, no effect from meta-tokenization is observed for any of the bench-
marked tools. For the StackOverflow dataset we also do not observe any
impact of meta-tokenization. However, while creating the dataset Calefato
et al. [43] removed some non-natural language elements. These removals
may have impacted the distribution of non-natural language elements over
the sentiment polarity classes and the results obtained. Nonetheless, be-
cause there is still some imbalance in the StackOverflow dataset (cf. Ta-
ble 3.6) and we observed no difference in the GitHub dataset, we do not
expect this to have influenced our results. In practice, this means that
replacing non-natural language elements does not further improve the per-
formance of sentiment analysis tools. Therefore, we recommend not replac-
ing non-natural language elements with meta-tokens for sentiment analysis
tasks.

However, the notion of using meta-tokens, or semantic categories, might be
beneficial for other contexts in which sentiment analysis or opinion mining is
applied. For instance, for the task of summarizing opinions expressed about
APIs, a topic previously studied by Uddin and Khomh [270]. The idea of
using a separate pre-processing step to merge semantically similar words
(performance, maintainability, usability) into one token (non-functionals)
could further improve the accuracy of summarization tools.

3.5.3 Benchmarking sentiment analysis tools

When sentiment analysis tools are benchmarked, the experimental set-up
should attempt to adhere to existing recommendations where possible. In
the benchmarks performed for RQ3.1 our results differ from the results re-
ported by Biswas et al. [38] and Chen et al. [55]. However, both Biswas et al.
and Chen et al. did not adhere to the recommendation of Novielli et al.
[189] to retrain all benchmarked tools on the datasets used in the study. As
a result of this, both studies find larger differences in predictive performance
between the machine-learners and deep-learners.

Additionally, for the experiments in this work, we ran each tool ten times
with different train-test splits per experiment to ensure that the results do

86 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

not depend on one particular train-test split. While analyzing the perfor-
mance scores of the sentiment-analysis tools we noticed that for some tools,
there is a large amount of variance in the performance scores (Figure 3.1 &
Figure 3.2). Therefore, when benchmarking sentiment analysis tools, and
especially when reporting the results of a single run in which small per-
formance differences are observed, one should be mindful of this variance.
Techniques to address such inconsistencies in results such as repeating runs
or k-fold cross validation [111], already exist. However, our findings again
stress that these techniques remain important for the study of sentiment
analysis tools in software engineering.

3.6 Threats to Validity
In this section we describe the threats to internal, external and conclusion
validity [224].

3.6.1 Internal Validity

A potential threat to internal validity is the presence of undetected and un-
replaced non-natural language elements in the datasets. These unreplaced
non-natural language elements could affect the validity of our results, as
these elements might impact the ability of the sentiment analysis tools to
learn to classify sentiment. To mitigate this risk of this happening we labeled
a sample of 100 items from each dataset and we identified the non-natural
language elements present in the sample, such that the most frequent types
of non-natural language have been identified. While labeling the sample for
non-natural language elements a substantial agreement was obtained by the
two authors who performed this labeling task.

The position of non-natural language in the text matters. For instance, while
labeling we encountered frequent examples of items such as usernames, file-
names, and source-code that were used more like named entities: “Thank
you @Username” vs. “@USERNAME. Thanks that was extremely helpful”. In
the second case, the non-natural language element exists separately from
the comment, while in the first case it is part of the comment. We opted to
not label the first occurrence as non-natural language since one could inter-
pret the occurrence of non-natural language as a part of the text. However,
for the automatic detection and replacement of non-natural language ele-
ments with meta-tokens we used regular expressions, which were not able to

3.6. THREATS TO VALIDITY 87

distinguish between these two cases. This imprecise removal might further
explain why we do not observe any effect of meta-tokenization.

Another risk that might have affected the obtained conclusions is our choice
for regular expression to replace the identified non-natural language ele-
ments. By design, this approach is only able to detect the non-natural
language elements that have been properly escaped with the markdown lan-
guage of the platform from which the dataset was taken. However, during
labeling we found instances of non-natural language elements which were
not (properly) escaped with markdown. Because of the choice for regular ex-
pressions these instances were not replaced by meta-tokens and might have
influenced the results and the observed impact of meta-tokenization.

The validity of the results for the benchmarking depend on the quality
of the original datasets according to Novielli et al. [189]. Both datasets
used in this study have been labeled using well-defined labeling guidelines.
However, both datasets were created by researchers from the same research
group, the items in both datasets were sampled using semi-random sampling
techniques, and both datasets are based on older datadumps. While these
factors might have affected the ability of the tools to ’learn’ how to classify
sentiment we have no reason to believe that any bias introduced by the
construction of the datasets is specific to one type of tools.

3.6.2 External Validity

For this work, we used two gold-standard datasets to evaluate the effect
of meta-tokenization. While these two datasets are the only two gold-
standard datasets available of this size labeled using theoretical models of
affect other datasets have been labeled in a more ad-hoc manner [149]. Our
results might not generalize over these datasets. However, given the ad-hoc
labeling used for these datasets any difference in observed results (either
for predictive performance or for the impact of meta-tokenization) might
not be due to the nature of the datasets, but due to the ad-hoc labeling.
Therefore, we have not opted to include these datasets in the study.

3.6.3 Conclusion Validity

We run multiple statistical tests to compare both the predictive performance
and agreement of the sentiment analysis tools. However, because we ran
statistical tests for each performance metric and each setting, we corrected

88 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

the p-values to reduce the false discovery rate. The procedure we used for
this is the Benjamini-Hochberg procedure (1995).

3.7 Related Work
Benchmarking studies of Sentiment Analysis tools for Software Engineer-
ing: Several studies have sought to benchmark the performance of senti-
ment analysis tools used for software engineering. Jongeling et al. found
that general-purpose sentiment analysis tools are inaccurate when they are
applied to technical texts [123]. To address this concern several software
engineering-specific sentiment analysis tools have been designed and bench-
marked [43, 40, 55, 76, 120, 298]. A benchmark of sentiment analysis tools
performed by Novielli et al. found that the dataset on which a software
engineering specific sentiment analysis tool is trained on greatly influences
the performance of the tools [189]. Moreover, Novielli et al. found that
the dataset on which a sentiment analysis tool has been trained not only
influences predictive performance but also conclusions that can be obtained
when applying sentiment analysis tools [190]. While these benchmarks eval-
uate the performance of sentiment analysis tools, they do not specifically
investigate how meta-tokenization influences performance.

Some of the benchmarks performed to compare software-engineering sen-
timent analysis tools include a comparison of machine-learning tools and
deep-learning tools[55, 298]. In the work of Chen et al. [55] the authors
compare the performance of Sentimoji with several other sentiment-analysis
tools, however, since the publication of the work newer datasets have been
released. Therefore, in this benchmark study, we add a comparison be-
tween machine learning and deep learning tools on the GitHub gold-standard
dataset. Moreover, in this work, we also compare Sentimoji with another
deep learner: The BERT-based transformer. Meanwhile, the work of Zhang
et al. [298] compares BERT-based transformers with machine learning and
dictionary-based sentiment analysis tools on both gold-standard datasets
used for this work. However, in the work of Zhang et al. the authors do not
retrain all machine-learning-based sentiment analysis tools in their bench-
marks. In this study, we retrain all tools used for the study, both machine-
learning and deep-learning-based ones, and therefore provide an accurate
comparison. Uddin et al. [269] also benchmark BERT-based transformers.
In their work Uddin et al. compare the BERT-based transformer with an
ensemble tool that combines the output of several sentiment analysis tools.

3.8. CONCLUSION 89

They find that the ensemble tool (SentiSEAD) slightly outperforms the
BERT-based transformers. However, they do not directly compare machine-
learning-based sentiment analysis tools with the BERT-based transformers,
and the work of Uddin et al. does not list the predictive performance of
each of the tools used as part of the ensemble. Therefore, the paper does
not contain enough information to answer RQ3.1 .

Non-natural language in technical text: Previous work already studied the
presence of non-natural language elements such as code fragments in tech-
nical texts. Bacchelli et al. investigated the usage of an automated tech-
nique to remove noise (code fragments) from e-mails [29]. They created a
manually labeled dataset based on the mailing lists of several open-source
projects and then used several features to classify whether a line belonging
to an e-mail on the mailing list is natural language or not. While Bacchelli
et al. study e-mail messages we use datasets that were taken from GitHub
and StackOverflow, additionally, Bacchelli et al. perform a line-based clas-
sification while we replace tokens in sentences. Secondly, Bacchelli et al. do
not study how their classification impacts sentiment analysis tools.

Mäntylä et al. designed an R-based classifier to classify whether a text frag-
ment is natural-language or not [169]. Gathered data from several different
platforms, and manually labeled whether these items are natural language.
To classify whether a line of text is natural language or not Mäntylä et al.
use a generalized linear model with a penalty, achieving high AUC and F-
scores. However, in the work of Mäntylä et al. entire lines are classified,
as opposed to the replacement of fragments within a text. Additionally,
Mäntylä et al. do not study how this classification influences sentiment
analysis tools.

Efstathiou et al. studied the language used by software engineers in code re-
views, in their work they describe replacing non-natural language fragments
with a token capturing the semantic meaning of the fragment [80]. While
we apply an approach that is similar to that of Efstathiou et al. we study
how these replacements influence the ability of sentiment analysis tools to
classify sentiment.

3.8 Conclusion
In this work, we set out to answer two different research questions: Based
on recent work [237, 288, 89, 202] we posed RQ3.1: Do existing deep-

90 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

learning sentiment analysis models outperform machine-learning-based sen-
timent analysis tools? Secondly, based on the idea proposed by Efstathiou
and Spinellis [80] we posed RQ3.2: How does the replacement of non-natural
language elements in sentiment analysis data with meta-tokens affect the
performance of Sentiment Analysis tools?

We have taken five sentiment analysis tools designed for software engi-
neering to answer these two research questions. Three machine-learning
tools and two deep-learning-based tools. Additionally, we selected two gold-
standard datasets of sentiment polarity and benchmarked all five tools on
both datasets. To answer RQ3.1, we compared machine-learning tools’
performance scores with the deep-learning-based tools’ scores. To address
RQ3.2, we identified and replaced several types of non-natural language el-
ements in the dataset with meta-tokens. We then compared per tool an
instance of the tool trained on the original dataset, and an instance of the
tool trained on the meta-tokenized version of the dataset.

For RQ3.1 we only observe minimal performance differences (no more than
4 percentage points) between the best-performing machine-learning tool
(Senti4SD) and the two deep-learning-based sentiment analysis tools. Based
on these findings, we extend the existing recommendations in the field of
sentiment analysis for software engineering with the recommendation that
the tool selection should not just be based on predictive performance. In-
stead, the alignment of the tool with the chosen theory of affect, and the
tool’s suitability for the given task should be considered. This recommen-
dation holds as long as the chosen tools are trained with appropriate gold-
standard datasets and the performance of these tools is validated on a
robustly labeled sample. While deep-learning and machine-learning-based
tools perform similarly when gold-standard datasets are available, future
work could focus on understanding whether tools perform equally well in
cases where less robustly labeled data is available.

Moreover, after studying the impact of meta-tokenization on the accuracy of
sentiment analysis tools (RQ3.2) we conclude that meta-tokenization does
not improve predictive performance, or agreement. Based on this finding, we
argue that the non-natural language elements present in the current gold-
standard datasets does not reduce the ability of sentiment analysis tools
to predict sentiment. However, there might be other contexts or domains
in which non-natural language elements impact sentiment analysis tools’
ability to predict sentiment, such as templated messages used by software

3.8. CONCLUSION 91

bots. Future work could focus on understanding whether meta-tokenization
is beneficial in these contexts.

92 CHAPTER 3. TRANSFOMERS AND META-TOKENIZATION

Chapter 4
Sentiment of Technical Debt
Security Questions on Stack
Overflow: A Replication
Study

Technical debt (TD) refers to the accumulation of negative consequences
resulting from sub-optimal solutions during software development. A recent
paper by Edbert et al. studied the difference between security-related TD
questions, and security-related non-TD questions on Stack Overflow (SO).
One of the characteristics under investigation is the sentiment expressed in
these two categories as sentiment provides insight into developers’ attitudes
and emotions toward security-related TD. To this end, Edbert et al. used
a general-purpose, off-the-shelf, sentiment analysis tool. However, previous
research has shown that general-purpose off-the-shelf sentiment tools are
potentially unreliable when applied to software engineering texts. Therefore,
we replicate the study by Edbert et al. using state-of-the-art sentiment anal-
ysis tools purpose-built and fine-tuned on SE data, to understand whether
and how tool-choice influences the obtained results. We consider both
machine (Senti4SD) and deep learning (BERT4SentiSE) tools. To further
understand the differences between machine and deep-learning sentiment
analysis tools, we perform a qualitative analysis into the underlying rea-

93

94 CHAPTER 4. REPLICATION STUDY

sons for tools disagreement. We identify five categories of disagreements:
misunderstanding context, courtesy phrases, subjective sentiment, brevity,
and divergent examples. This chapter makes a methodological contribution
to the scientific body of knowledge primarily relevant to researchers. Con-
sequently, the chapter does not report any insights directly applicable to
developers. Instead, the findings of this Chapter are helpful to researchers
who want to apply sentiment analysis to study developers. Through this
chapter, we re-iterate how important the careful selection of sentiment anal-
ysis tools is in performing sentiment analysis. Furthermore, the results are
relevant to users and developers of sentiment analysis tools, as they inform
tool selection dependent on the application domain, and provide insight
into optimization of the pre-processing steps. Finally, our study shows that
retraining sentiment analysis tools with identical data fails to resolve fun-
damental inconsistencies between how certain types of language, such as
courtesy phrases, are classified.

4.1 Introduction
Technical debt (TD) is a metaphor representing the accumulated negative
consequences resulting from choosing expedient or sub-optimal solutions
during software development [63]. TD can result in negative consequences
such as increased complexity, increased vulnerabilities, and reduced main-
tainability [144].

To manage software security in the development life cycle the concept of
TD has been extended to the security domain, thereby introducing the
notion of security-related TD [221]. Security-related TD is TD that results
in sub-optimal security practices. These practices can weaken the security
of a system significantly and potentially result in exploitable vulnerabilities
[136], hence managing security TD is of the essence.

To obtain further insights into the challenges and needs surrounding security-
related TD Edbert et al. [79] have recently studied security-related TD
questions (STDQs) at Stack Overflow (SO). SO is an extensive archive of
SE knowledge, offering information on specific technologies and correspond-
ing developer perspectives [31], and has been used to study TD in the past
[18, 95].

One of the aspects studied by Edbert et al. [79] was the sentiment of
STDQs on SO. Analyzing sentiment improves understanding of popularity

4.1. INTRODUCTION 95

and emotion toward security-related TD questions [175]. The study by
Edbert et al. found that the sentiment expressed by security-related TD
SO questions is mostly neutral. Furthermore, the sentiment expressed in
STDQs is comparable to the sentiment expressed by security-related non-
TD SO questions.

To perform this analysis, Edbert et al. used the VADER sentiment analysis
tool from the NLTK package. However, Lin et al. [151] have shown that
off-the-shelf sentiment analysis tools such as VADER perform poorly on SE
data, and hence Lin et al. discourage the usage of tools such as VADER
within a SE context. Furthermore, they recommend using sentiment anal-
ysis tools that have been retrained on SE data when conducting sentiment
analysis within the SE domain.

Given the relevance of security-related TD and the potential inaccuracies
of off-the-shelf sentiment analysis tools, we have opted to conduct an inde-
pendent replication [236, 46, 68] of the sentiment analysis study of Edbert
et al. [79]. Specifically, when replicating the study of Edbert et al. [79] we
are interested in finding whether replacing VADER with SE-specific senti-
ment analysis tools such as Senti4SD [43] and BERT4SentiSE [38] would
affect the study conclusions. We opt not to include state-of-the-art Large
Language Models, as they are currently infeasible to run on large data sets.
Through replication we answer the following research questions:

RQ4.1: What sentiment is expressed in security-related techni-
cal debt questions on Stack Overflow?

RQ4.2: How does the sentiment contrast with the sentiment
of non-technical debt security-related questions on Stack Over-
flow?

Building on our replication study we further reflect on similarities and dif-
ferences between machine-learning and deep-learning SE-specific sentiment
analysis tools. While previous research has investigated the difference in
performance between such tools [268], the question arises in what context
a specific tool is most appropriate, and why. Hence, we conduct a follow-
up qualitative study to better understand why machine- and deep-learning
tools disagree, i.e., answer

RQ4.3: What are the underlying reasons as to why Senti4SD
and BERT4SentiSE evaluate a SO question to have a different
sentiment?

96 CHAPTER 4. REPLICATION STUDY

The remainder of this chapter is organized as follows. In Section 4.2 we dis-
cuss related literature, and in particular SE-specific sentiment analysis tools
Senti4SD and BERT4SentiSE. In Section 4.3 we discuss the methodology
employed for our analysis. This is followed by a presentation of our findings
in Section 4.4. Threats to validity are presented in Section 4.5. Section 4.6
contains a discussion of presented results, Section 4.7 the implications of
the research, and Section 4.8 concludes.

4.2 Related Work
Sentiment analysis tools have been extensively used to analyze software
engineering data. For example, Calefato et al. [45] observed that successful
SO questions typically employ a neutral emotional tone.

When considering the security domain specifically, Pletea et al. [212] have
previously conducted research into the sentiment of security-related discus-
sions on GitHub. They found that these discussions compromise approxi-
mately 10% of the total discussions on GitHub. The sentiment of security-
related discussions was more negative than non-security-related discussions.
While this work used NLTK VADER, an off-the-self sentiment analysis tool,
and hence a priori its results might be inaccurate, they have been confirmed
by subsequent replication studies [190].

SE-specific sentiment analysis tools Machine-learning tool Senti4SD
was originally introduced by Calefato et al. [43]. Senti4SD is a distri-
butional semantic model (DSM) and uses both lexicon and keyword-based
features, as well as word embeddings to obtain semantic features. Senti4SD
was originally trained on the gold standard SO data-set introduced in that
same paper. SentiCR is another machine-learning tool developed by Ahmed
et al. [17]. SentiCR converts the input text into a vector using a bag-of-
words approach. Then for classification, the Gradient Boosting Tree (GBT)
algorithm is applied to the vector.

Deep-learning tool BERT4SentiSE is a supervised deep-learning tool origi-
nally introduced by Biswas et al. [38]. BERT4SentiSE is based on the BERT
model developed at Google [73]. The tool uses a language representation
model to effectively answer natural language processing tasks. Introduced
by Chen et al. [55], SentiMoji is a deep-learning tool built atop DeepMoji
[85]. DeepMoji has learned using Twitter and Github data to classify senti-

4.2. RELATED WORK 97

ment by associating emojis with text. Emojis representing the text are then
transformed into a vector, which in the final layer of SentiMoji is used to
classify sentiment polarity.

Tool benchmarking Novielli et al. [189] have looked at the performance
of SE-specific sentiment analysis tools and their accuracy in different set-
tings. In particular, they looked at lexical-based and supervised sentiment
analysis tools. Supervised models are trained on SE data such as SO ques-
tions, GitHub discussions, or Jira issues. The performance of supervised
models is significantly better in a within-platform setting, meaning the tools
are better at evaluating samples originating from the same platform as their
training set. Further work by Uddin et al. [268] confirmed these results
and added deep learning SE-specific sentiment analysis tools to the com-
parison. In the within-platform setting for SO data the deep learning tool
BERT4SentiSE performs best on all three of the evaluation metrics (pre-
cision 0.88, recall 0.88, F1 score 0.88). For machine-learning based tools,
Senti4SD performs best (precision 0.85, recall 0.85, F1 score 0.85).

Zooming in on the misclassifications of the machine-learning tools Novielli
et al. [191] identified seven categories of misclassifications. The most com-
mon category was polar facts, phrases that evoke an emotion while the text
remains neutral. General errors are cases where the tool is unable to cope
with the context or misclassifies because of poor pre-processing. Politeness,
are instances where tools struggle to differentiate between neutral and non-
neutral sentiment. In implicit sentiment polarity, emotion is not expressed
explicitly through emotive words. Subjectivity in sentiment analysis, are
cases where the evaluation of sentiment is subjective. Lastly, the inabil-
ity to deal with pragmatics or context information, and figurative language
were the two least common categories.

Replications of SE-specific sentiment analysis studies Jongeling et al.
[123] and Novielli et al. [190] have conducted replication studies of senti-
ment in software engineering texts. Jongeling et al. replicated two empirical
SE studies that use off-the-shelf sentiment analysis tools. In their replication
study, they used four off-the-shelf sentiment analysis tools. When replicat-
ing the study by Pletea et al. [212] vastly different data was obtained, yet
Jongeling et al. were able to confirm most of the conclusions of Pletea
et al.. For the second study Jongeling et al. replicated, the conclusions
could not be confirmed. Novielli et al. [190] also replicated the work of

98 CHAPTER 4. REPLICATION STUDY

Pletea et al. using 4 SE-specific sentiment analysis tools. The original
conclusions were again mostly valid despite the tools obtaining dissimilar
distributions of sentiment. The conclusions of the second study replicated
by Novielli et al. could not be validated, as each of the three SE-specific
tools resulted in contradictory conclusions.

4.3 Methodology
As befitting a replication study we follow the methodology employed in the
original work by Edbert et al. [79]. The only differentiation from the original
study is the selection of sentiment analysis tools. We re-use the dataset from
the original work by Edbert et al. [79]. To classify the sentiment of each
question we follow the procedure used by Edbert et al. [79] to preprocess
the data, and we append the title to the body for each SO question. Then
we apply three sentiment analysis tools to the resulting data set: VADER,
the tool used by Edbert et al., Senti4SD [43], and BERT4SentiSE [38]. To
answer RQ4.1 and RQ4.2, we perform statistical analysis of the distributions
of sentiment values reported by the tools, while for RQ4.3, we perform
thematic analysis of the disagreement between the tools.

4.3.1 Data

Using the predefined list of SO tags identified by Yang et al. [286], Edbert
et al. [79] have collected SO questions tagged with such security-related
tags as “sql-injection” or “websecurity”.Next, Edbert et al. used an ML
classifier to categorize the questions into technical debt, i.e., STDQ, and
non-technical debt, i.e., non-STDQ. The dataset contains 45,078 (38%)
STDQs and 72,155 (62%) non-STDQs. We do not replicate this classifica-
tion process and consider the same 45,078 STDQs and 72,155 non-STDQs
as in the original study by Edbert et al.

4.3.2 Sentiment Analysis Tools

VADER represents the baseline against which we can compare the other SE-
specific sentiment analysis tools. VADER outputs a decimal score between
−1 (negative) and 1 (positive). We convert this decimal score to a ternary
score using the procedure outlined in VADER’s documentation1: A score

1https://github.com/cjhutto/vaderSentiment

4.3. METHODOLOGY 99

greater than or equal to 0.05 is mapped to “positive,” score smaller than or
equal to −0.05—to “negative,” and a score between −0.05 and 0.05— to
“neutral.”

We compare VADER with the best-performing machine-learning and the
best-performing deep-learning tools on SO data [268], namely Senti4SD [43]
and BERT4SentiSE [38]. Since Senti4SD is pre-trained using the gold stan-
dard SO sentiment data set introduced by Calefato et al. [43] we use the
default hyperparameters for Senti4SD within our study. We have retrained
BERT4SentiSE using the same gold standard SO data set. Both Senti4SD
and BERT4SentiSE classify input text as either “positive”, “negative” or
“neutral.”

4.3.3 Analysis

To answer RQ4.1, we plot the proportion of SO questions corresponding
to each tool’s three polarity categories (negative, neutral, positive). To an-
swer RQ4.2, we test whether the sentiment distribution between STDQs and
non-STDQs differs using the Cochran-Armitage test. Under the assump-
tion that all three sentiment polarity classes can be ordered (positive >
neutral > negative). We use the traditional significance threshold of 0.05
and to control for multiple comparisons we correct the p-values using the
Benjamini-Hochberg procedure [35].

To answer RQ4.3 we perform a qualitative analysis of disagreement between
the tools. Inspired by grounded theory building [231] we follow an iterative
approach. We sampled random batches of 20 SO questions that were clas-
sified differently by Senti4SD and BERT4SentiSE. For each question in the
batch, the sentiment is manually evaluated using the guidelines provided
by Calefato et al. [43] based on the framework of Shaver et al. [235]. To
ensure consistency between batches, the same author evaluates each batch.
Having manually established the sentiment of the question, we next deter-
mine the phrases that influenced the classifiers in their sentiment evaluation
and group the phrases into broader categories. Batches are sampled until
no new categories are obtained, i.e., saturation is reached.

100 CHAPTER 4. REPLICATION STUDY

4.3.4 Availability of Data

To encourage further replications, all material produced, such as input data,
generated data, and code is available in the replication package.2

4.4 Results

In this section, we discuss the results to RQ4.1, RQ4.2 and RQ4.3.

4.4.1 RQ4.1: What sentiments are expressed in security-related
technical debt questions on Stack Overflow?

Table 4.1 summarize the numbers of positive, neutral, and negative security-
related STDQs identified by VADER, Senti4SD, and BERT4SentiSE. We
note that VADER rates almost all SO questions as non-neutral, and the ma-
jority as positive. Both Senti4SD and BERT4SentiSE predominantly rate
the questions with a neutral sentiment. This observation is aligned with the
observation of Raman et al. [216] that many terms such as ‘abort’ and ‘kill’
that have negative connotations in general English, but are neutral in soft-
ware engineering. The numbers of questions Senti4SD and BERT4SentiSE
label as negative and positive are relatively similar.

The paper by Edbert et al. states that STDQs “typically have a neutral
sentiment” [79]. Table 4.1 invalidates this conclusion when VADER is con-
sidered, the very same tool used by Edbert et al. in the original study. The
conclusion is, however, valid when considering SE-specific tools Senti4SD
and BERT4SentiSE. Since SE-specific tools have been repeatedly shown
to be a better proxy for human sentiment assessment, we believe that the
statement that STDQs “typically have a neutral sentiment” has been con-
firmed.

RQ4.1

STDQs have a positive sentiment when VADER is used for analysis
contradicting the results of Edbert et al.; SE-specific tools Senti4SD
and BERT4SentiSE find that STDQs are mostly neutral.

2https://osf.io/cdxhk/?view_only=8b7f6c90ca884781a14630a2d38e16e5

https://osf.io/cdxhk/?view_only=8b7f6c90ca884781a14630a2d38e16e5

4.4. RESULTS 101

Table 4.1: Sentiment of security-related TD questions on SO

Tools Expressed sentiment
Positive Neutral Negative

VADER 33,904 1,517 9,657
Senti4SD 11,937 19,626 13,515
BERT4SentiSE 4,708 35,879 4,491

4.4.2 RQ4.2: How does the sentiment contrast with the sen-
timent of non-technical debt security-related questions
on Stack Overflow?

There are 72,149 non-STDQs, i.e., non-TD security-related SO questions
in the data set. The number of questions corresponding to each of the
three polarity labels is displayed in Table 4.2. Similarly to STDQs, we find
that VADER rates the majority of questions positive, and very few neutral.
The distribution of sentiment of Senti4SD and Bert4SentiSE for non-TD
questions seems to be very similar to the distribution of TD questions.
Again most questions are rated neutral.

Table 4.2: Sentiment of security-related non-TD questions on SO

Tools Expressed sentiment
Positive Neutral Negative

VADER 45,725 7,062 19,362
Senti4SD 18,379 31,911 21,859
BERT4SentiSE 7,808 58,785 5,556

To verify whether the distribution of sentiment is statistically different be-
tween TD questions and non-TD questions we run the Cochran-Armitage
statistical test. The resulting statistic and p-values (rounded to 4 decimals)
can be found in Table 4.3.

As outlined previously we use a significance level of p < 0.05 in our statisti-
cal tests and we corrected the p-values using the Benjamini-Hochberg [35]
procedure to control for multiple comparisons. For the Cochran-Armitage
test, we obtain p-values of less than 0.05 for all three tools. Hence we

102 CHAPTER 4. REPLICATION STUDY

can reject the null hypotheses, meaning the distributions of sentiment for
STDQs and non-STDQs are different.

Edbert et al. concluded that the sentiment in security-related TD ques-
tions is comparable to the sentiment expressed in security-related non-TD
questions [79]. However, statistical analysis reveals that the distributions of
sentiment STDQs and non-STDQs are statistically different.

RQ4.2

We conclude that the distribution of sentiment for STDQs and non-
STDQs is different, contradicting the conclusion by Edbert et al.

4.4.3 RQ4.3: What are the underlying reasons as to why
Senti4SD and BERT4SentiSE evaluate a SO question
to have a different sentiment.

We manually evaluated 6 batches of 120 security-related SO questions at
which point saturation was reached. We detected the following five cat-
egories for causes of misclassification: courtesy phrases, misunderstanding
context, brevity, divergent examples, and subjective sentiment.

Courtesy phrases are words and phrases that express politeness but are not
necessarily emotionally charged, e.g., “thanks” or “help is appreciated”. Mis-
understanding context refers to language that should be considered neutral
within the specific communicative context but which might be misinter-
preted as negative or positive if the context is ignored. Brevity refers to

Table 4.3: Statistical test on distribution of sentiment between STDQs vs
non-STDQs. Zero as the p-value means that the p-value is too small to be
computed exactly.

Tools Cochran-Armitage
statistic p-value

VADER 2465 0
Senti4SD 14.81 0.0006
BERT4SentiSE 181.54 0

4.4. RESULTS 103

short text fragments (< 20 words) that are neutral but result in at least
one of the tools evaluating the fragment as positive or negative. Divergent
examples refer to examples given by the author of the SO question that
are inherently confusing, these include code as well as emotive dummy text.
One such example is "Here is a hint: ’GOOD’ ’LUCK’, it ’SOUNDS SIMPLE
TO ME’". Lastly, subjective sentiment are fragments where the sentiment
is not clear. These can be cases where both overtly positive and negative
sentiment is expressed, or in general, when a reasonable argument for more
than 1 sentiment label can be made. Any SO question can be assigned zero
or more of these categories.

Table 4.4: Manual evaluation of miss-classification frequency

Misunderstanding Context 43
Courtesy Phrases 37
Subjective Sentiment 13
Brevity of text 7
Divergent examples 3
No category 32

Category Frequency

During the manual evaluation of 120 SO questions, we found 43 cases
where misunderstanding context occurred, 37 cases using courtesy phrases,
13 cases with subjective sentiment, 7 cases where brevity of text was rel-
evant, and 3 cases where divergent examples played a role. See Table 4.4
for the results. For 32 questions (27%) we could not determine any cate-
gory accurately explaining the miss-classification. An example of such an
inexplicable question would be the following:

Find out map path from user account to Security group[Win
server 2012].
I have system account which is part of a security group. the
account is added to SG indirectly. How can i find the map path
between the user account and Security group

This fragment clearly expresses a neutral sentiment, nonetheless, Senti4SD
assigned a positive polarity to this fragment. None of the hypotheses that

104 CHAPTER 4. REPLICATION STUDY

could potentially explain the positive evaluation in this case were consistent
with the other fragments we analyzed, and hence we leave these inexplicable
questions uncategorized.

Courtesy phrases seem to have a noticeable effect on BERT4SentiSE. In to-
tal, there are 37 questions in which courtesy phrases occur. BERT4SentiSE
rates 16 of these questions with a positive sentiment. In total, BERT4SentiSE
only rates a total of 17 questions as positive, hence the vast majority of pos-
itively rated questions by BERT4SentiSE contain courtesy phrases. Ques-
tions containing courtesy phrases are often rated as positive by BERT4SentiSE
despite being neutral (10 such cases in our manually annotated sample),
hence courtesy phrases result in many false positives for BERT4SentiSE.
BERT4SentiSE only rates a question with courtesy phrases as negative if
there is some other overtly negative expression in the question which is
why these classifications tend to be accurate. Meanwhile, Senti4SD does
not seem to be affected by courtesy phrases, out of the 37 questions con-
taining courtesy phrases Senti4SD only classifies 12 as positive, and 17 as
negative. Therefore it seems that Senti4SD ignores courtesy phrases in
its polarity assessment while BERT4SentiSE tends to use it as an indica-
tion of positive polarity. Questions containing courtesy phrases often result
in opposite classifications by Senti4SD and BERT4SentiSE, here, opposite
classifications occur when one classifier rates the fragment as positive, and
the other as negative. Out of the 13 questions with opposite classifications,
11 contain courtesy phrases.

Deep-learning tools are expected to outperform machine-learning tools when
understanding of context is important in classifying a fragment. In total
there are 43 SO questions in our analysis for which misunderstanding of
context leads to misclassifications. BERT4SentiSE correctly classifies 35
out of 43 such cases. While Senti4SD correctly classifies only 5 out of 43
cases. This seems to confirm our hypothesis that deep-learning tools are
better at understanding context.

Brief SO questions (< 20 words) do not seem to affect BERT4SentiSE,
for all 7 instances in our data-set BERT4SentiSE correctly labels them as
neutral. Senti4SD rates all 7 of these instances as either positive or negative,
hence Senti4SD incorrectly classifies all SO questions of short length. A
potential reason for this is that Senti4SD detects some word or phrase with
a slight polarity, since the text fragment is short this polarity dominates the
sentiment calculation, causing the fragment to be rated incorrectly.

4.5. THREATS TO VALIDITY 105

The sample contains 3 SO questions in which the examples used confuse the
tools. Code examples that were not contained in an HTML or markdown
element have not been removed during pre-processing. These cases seem
to confuse both classifiers. Examples that contain words with emotional
polarity confuse BERT4SentiSE, however, the sample size is insufficiently
small to verify the effects precisely.

There are 13 instances where confusion arose during the manual labeling
of sentiment. For 3 of these cases, the tools assigned opposite sentiment
classifications.

RQ4.3

We found five different causes for missclassifications between
BERT4SentiSE and Senti4SD. Notably, BERT4SentiSE is more likely
to classify text containing courtesy phrases as positive and is more
accurate when the expression of sentiment is context-dependent.
Meanwhile, Senti4SD incorrectly classifies short text as non-neutral.

4.5 Threats to validity
Our replication study adheres closely to the methodology of the original
work; consequently, several threats to validity that are pertinent to the
original study are also applicable to this replication.

Construct validity refers to the degree to which a measurement or test ac-
curately assesses the concept it intends to measure. Similar to the original
work by Edbert et al. the data set of SO questions was filtered using the
keywords associated with an SO question. This could lead to inconsisten-
cies as the keywords are assigned by the author of the SO question. The
original paper’s authors manually checked a statistically significant sample
and determined that in 97% of cases, the questions were indeed security-
related. Our study uses the same data set, and thus, this is also applicable
to our study. Manual verification reduces the threat to validity; however, a
potential threat persists due to the subjectivity of manual evaluation. Fur-
thermore, during filtering, only the 9 keywords as identified by Yang et al.
[286] were used. Security questions not using these keywords could have
been missed, resulting in a potential threat to validity.

106 CHAPTER 4. REPLICATION STUDY

The qualitative analysis in our study used a manual evaluation of SO ques-
tions. Emotion perception, which includes sentiment evaluation, is subjec-
tive to the person conducting the evaluation [230]. The manual evaluation
used in the qualitative analysis was conducted by a single author, thereby
potentially introducing subjectivity into the assessment. To mitigate this
threat, we excluded difficult cases from our analysis by not assigning any
sentiment to them in our manual labeling. Secondly, in line with recom-
mendations [189] we used the emotion classification framework of Shaver
et al. [235].
Internal validity is the extent to which a study accurately measures the
impact of the independent variable. The classifier determining whether SO
questions are TD or non-TD forms a threat to the study’s internal validity.
The classifier had an F1 score of 0.75 in the original work, which is sub-
optimal as the data set may contain false positives and false negatives.
The completeness and accuracy of the misclassification categories identified
in our qualitative analysis can not be verified, as they are exploratory. Some
of the categories do conform with a previous qualitative analysis that com-
pared misclassifications of several machine-learning tools [191], indicating
our results are not completely unfounded.
External validity is the extent to which a study can be generalized outside
the study setting. Similar to the original study, we restrict our analysis to
SO data; generalizing our conclusions to security-related TD in general is
not necessarily valid. By making the materials used in this study publicly
available, we encourage evaluation of its external validity.
Furthermore, we aim to generalize our qualitative analysis to machine-
learning and deep-learning tools in general. This generalization is not nec-
essarily valid, as the machine-learning and deep-learning tools not evaluated
in our study use different training data and use comparable but different
classification techniques.
Conclusion validity is the extent to which the inferences and conclusions
are warranted. In the original study by Edbert et al., conclusions are rather
vague, using terms such as comparable to describe how the distribution of
sentiment among STDQs and non-STDQs differ. In our replication study,
we precisely define and verify hypotheses using appropriate statistical tests,
thereby reducing the threat to conclusion validity. Additionally, we minimize
the false discovery rate by controlling for multiple comparisons.

4.6. DISCUSSION 107

4.6 Discussion

It is important to note that when replicating the original study, with the
same tool, using the same data, we do not confirm the conclusion of Edbert
et al. [79] that STDQs are mostly neutral. Meanwhile, when we use SE-
specific sentiment analysis tools, we do find that STDQs are mostly neutral.
This results in a curious situation, where the original study’s data does not
support the drawn conclusion, yet the data derived using an independent
replication does confirm their conclusion.

The original paper also claims that the sentiment in STDQs and non-
STDQs are comparable. Using statistical tests, we find that this conclu-
sion can not be validated for sentiment derived using VADER, Senti4SD, or
BERT4SentiSE. This shows the importance of using hypothesis tests, as op-
posed to merely relying on visual confirmation. Furthermore, this suggests
that developers experience dealing with security-related TD differently from
dealing with security-related non-TD. This discrepancy could be caused by
factors such as lack of understanding, usefulness in obtaining short-term
benefit, and frustration [144, 36].

Previous replication studies in sentiment analysis for software engineering
have sought to verify claims about a singular polarity label when inves-
tigating the effect of SE-specific sentiment analysis tools on conclusion
validity [123, 190]. In other words, the replications studied the validity
of conclusions claiming that a certain data group is more negative/posi-
tive/neutral than a different group. In this work, we verified a similar claim:
STDQs are mostly neutral. However, we also observed that the polarity
distribution differs between BERT4SentiSE and Senti4SD. Hence, conclu-
sions that make a claim about a singular polarity label are weaker than
conclusions about the general distribution of polarity between groups. In
contrast to previous replication studies, we also verified a stronger claim:
Specifically about the general distribution of sentiment between STDQs
and non-STDQs. We found that sentiment polarity distributes differently
across these two categories. The original work by Edbert et al. [79] claimed
the distributions are comparable, further highlighting that claims about a
specific polarity label tend to be easier to validate than claims about the
general distribution.

Further inspection of disagreements between Senti4SD and BERT4SentiSE
indicates that misunderstanding context, courtesy phrases, and subjective

108 CHAPTER 4. REPLICATION STUDY

sentiment each influence misclassification. These findings seem to corre-
spond with previous research analyzing the misclassifications of machine-
learning tools [191]. Misunderstanding context seems to occur frequently in
our study. Deep-learning tools such as BERT4SentiSE use a language repre-
sentation model to process natural language effectively [38]. This method
seems to result in a better understanding of contextual semantics than
machine-learning tools, such as Senti4SD, which derive their contextual un-
derstanding from training data. Furthermore, despite both Senti4SD and
BERT4SentiSE having been retrained using the same gold standard SO
data set, they evaluate courtesy phrases very differently. Hence, we con-
clude that merely using the same data set is insufficient for tool consistency.
Therefore, when selecting tools these discrepancies should be taken into ac-
count to ensure that the chosen tool reflects the desired interpretation of
sentiment. Furthermore, this seems to imply that deliberate strategies are
necessary to deal with of inconsistencies among tools.

4.7 Implications
Below, we summarize the implications of our research for researchers and
developers of sentiment analysis tools.

For researchers. We have seen that deep-learning tools such as BERT4SentiSE
are better at determining sentiment in situations where context is highly rel-
evant. Future research could investigate whether incorporating more con-
textually diverse training data for machine learning tools such as Senti4SD
significantly improves the ability to differentiate neutral contexts. Further-
more, the suitability of BERT4SentiSE for situations where context is rel-
evant should be used to inform tool choice. Additionally, the different
handling of courtesy phrases by both BERT4SentiSE and Senti4SD could
also be a factor in picking one tool over the other.

Future work should investigate the cause of the discrepancy in sentiment
polarity between STDQs and non-STDQs. Understanding the cause of why
sentiment polarity differs over these two groups of questions could help man-
agers and/or educators take action to avoid unnecessary negative sentiment
and thereby mitigate any detrimental effects that negative sentiment can
have [106].

For developers of sentiment analysis tools. As sentiment analysis tools
are inconsistent in their evaluation of courtesy phrases developers of senti-

4.8. CONCLUSION 109

ment analysis tools should take extra care to ensure the polarity of courtesy
phrases conforms to their understanding of courtesy phrases polarity. Espe-
cially because we have seen that retraining tools on the same data set does
not immediately result in consistency between tools. Therefore, strategies
must be developed to address these inconsistencies explicitly, as retraining
is unsatisfactory. Developers could also aid accurate tool usage by explicitly
stating how their tool deals with courtesy phrases and whether they are
considered neutral or non-neutral.

4.8 Conclusion
In this replication study, we investigated the sentiment of STDQs, and
how their sentiment contrasts with that of non-STDQs on SO using SE-
specific sentiment analysis tools. We validated the claim of the original
study by Edbert et al. [79] that STDQs are mostly neutral. Furthermore,
we investigated the sentiment expressed in STDQs and non-STDQs. We
found that their distribution is different, contradicting the assertion in the
original work that the sentiment of TD and non-TD security-related SO
questions are comparable.

Novel insights were obtained when we further investigated why state-of-the-
art machine and deep-learning SE-specific sentiment analysis tools classify
SO questions differently. We found that the deep-learning tool BERT4SentiSE
is better at understanding neutral contextual semantics. Furthermore, we
found that machine-learning and deep-learning tools that have been trained
on the same data evaluate courtesy phrases fundamentally different, result-
ing in inconsistent classifications between tools. We therefore recommend
careful analysis of the application-domain before tool selection.

110 CHAPTER 4. REPLICATION STUDY

Chapter 5
Self-Admitted Technical Debt
and Comments’ Polarity: An
Empirical Study

Self-Admitted Technical Debt (SATD) consists of annotations —typically,
but not only, source code comments— pointing out incomplete features,
maintainability problems, or, in general, portions of a program not-ready
yet. The way a SATD comment is written, and specifically its polarity, may
be a proxy indicator of the severity of the problem and, to some extent, of
the priority with which it should be addressed. In this chapter, we study the
relationship between different types of SATD comments in source code and
their polarity, to understand in which circumstances (and why) developers
use negative or rather neutral comments to highlight an SATD. To address
this goal, we combine a manual analysis of 1038 SATD comments from a
curated dataset with a survey involving 46 professional developers. First of
all, we categorize SATD content into its types. Then, we study the extent
to which developers express negative sentiment in different types of SATD
as a proxy for priority, and whether they believe this can be considered as
an acceptable practice. Finally, we look at whether such annotations con-
tain additional details such as bug references and developers’ names/initials.
Results of the study indicate that SATD comments are mainly used for an-
notating poor implementation choices (≃ 41%) and partially implemented

111

112 CHAPTER 5. SATD AND POLARITY

functionality (≃ 22%). The latter may depend from “waiting” for other
features being implemented, and this makes SATD comments more neg-
atives than in other cases. Around 30% of the survey respondents agree
on using/interpreting negative sentiment as a proxy for priority, while 50%
of them indicate that it would be better to discuss SATD on issue track-
ers and not in the source code. However, while our study indicates that
open-source developers use links to external systems, such as bug identi-
fiers, to annotate high-priority SATD, better tool support is required for
SATD management.

5.1 Introduction
Self-Admitted Technical Debt (SATD) [215] refers to source code comments
(as well as other annotations elsewhere) indicating that the corresponding
source code is (temporarily) inadequate, e.g., because the implementation
is incomplete, buggy, or smelly. The identification of SATD [67, 220], as
well as its introduction or removal, have attracted significant attention of
the research community [32, 64, 293, 217, 295].

In this chapter, we study the annotation practices of open-source devel-
opers from two perspectives. First, we use an existing curated dataset of
SATD comments [67] to study their content and their sentiment polarity.
Second, we survey open-source developers to (i) ask them about specific
annotation practices they adopt, and (ii) elicit the SATD comments that
they would draft in five different scenarios representative of code not being
right yet.

To understand which kinds of technical debt (TD) are annotated by de-
velopers, previous literature has also categorized SATD comments. The
categorizations of SATD proposed so far are based on the various phases
of the software development process [66, 32]. As such, they (i) miss the
opportunity to identify concerns transcending the boundaries of individual
development phases such as waiting for other components to be ready, and
(ii) are somewhat broad because the SATD content still lacks an in-depth
classification. Specifically, while SATD might manifest at one phase of the
software development process, resolving it might require activities typically
associated with another phase. For instance, the following SATD com-
ment,1 taken from the Apache Ant project, can manifest during testing

1Even if the comment does not explicitly “admit” to technical-debt being present, it

5.1. INTRODUCTION 113

but its resolution requires a bug to be fixed, i.e., a typical implementation
activity.

“doesn’t work: Depending on the compression engine used,
compressed bytes may differ. False errors would be reported.
assertTrue(“File content mismatch”,
FILE_UTILS.contentEquals(. . .)));.”

Hence, while the existing categorizations contribute to the understanding of
the SATD phenomenon, we think that a different categorization is required
as a basis for the design of tools that can help support SATD resolution. By
providing a more fine-grained classification of the problems experienced by
contributors we expect that more actionable insights can be obtained from
SATD. Thus, we ask the following research question:

RQ5.1: What kind of problems do SATD annotations describe?

To address RQ5.1, we use 1038 SATD comments sampled from the dataset
of da S. Maldonado et al. [67] to perform a fine-grained classification. We
classify SATD comments from the point of view of their textual content, as
opposed to the software development life-cycle, as it was done in previous
work [66, 32]. Our taxonomy has been created by adopting a bottom-up
strategy (i.e., what do SATD comments mention?) rather than a top-down
(i.e., how do SATD comments map onto a software development life-cycle?).
This leads us towards a taxonomy featuring nine top-level categories special-
ized into 32 sub-categories. The taxonomy spotlights categories that are,
on the one hand, crosscutting to the life-cycle and, on the other hand, more
related to the reasons why SATD was admitted and to the goal developers
want to achieve.

Different authors have studied the sentiment and emotions expressed by de-
velopers [168, 183, 192, 149]. In particular, Mäntylä et al. [168] and Murgia
et al. [183] studied emotions expressed in the context of issue reports, find-
ing that there appears to be a link between issue priority and complexity and
negative emotions present in issue reports. When describing TD, developers
could express the same concept in neutral or in a rather negative fashion.
For instance, in the following comment from JRuby the author expresses a
negative attitude:

“// Yow...this is still ugly”

is still considered SATD as it explicitely acknowledges technical debt.

114 CHAPTER 5. SATD AND POLARITY

Several authors hypothesize that the expression of negative sentiment may
be a proxy for the priority of a problem to be solved [94, 270, 150]. In
other fields, such as marketing, negative sentiment has a clear meaning.
For instance, customers give greater weight to negative information [281],
and negative reviews are more useful to customers’ decisions than positive
ones [47, 244]. However, to the best of our knowledge, nobody has studied
how priority is expressed in different kinds of software development issues—
and in particular TD-related issues—and whether developers use negative
sentiment to indicate priority. This leads us to address the following research
question:

RQ5.2: How do developers annotate SATD that they believe
requires extra priority?

To address RQ5.2, we ask developers how they would annotate TD they
believe requires more priority, and specifically whether they would (i) use
negative sentiment to indicate higher priority and (ii) interpret a comment
with negative sentiment as an indication of higher priority. Our results
show that while the perception of negativity as a proxy for priority is not
necessarily shared by all developers, it is still sufficiently common to confirm
this relation as hypothesized in the previous work [94, 270, 150].

Other than that, we also seek to understand whether developers believe
that the expression of negative sentiment in annotating TD is an accept-
able practice. In particular, if developers believe that expressing negativity
is not acceptable, then they might feel obliged to suppress it. Suppressing
negative emotions is an example of emotional labor—i.e., the “process by
which workers are expected to manage their feelings in accordance with
organizationally defined rules and guidelines” [114]—in software develop-
ers [233]. While traditionally, software development has been stereotyped
as a job less likely to induce emotional labor [74], communication between
developers and their collaborators makes their job an intrinsically social ac-
tivity [252]. Therefore, we ask the following:

RQ5.3: Do developers believe that the expression of negative
sentiment in SATD is an acceptable practice?

To address RQ5.3, we directly ask open-source developers whether they
believe that expressing negativity when annotating TD is an acceptable
practice.

Furthermore, certain kinds of TD may be expressed with a different sen-

5.1. INTRODUCTION 115

timent. For example, an issue affecting the system’s functionality may be
perceived as more critical than a documentation or maintainability issue,
and therefore be expressed more negatively. This leads us to address the
following research question:

RQ5.4: How does the occurrence of negative sentiment vary
across different kinds of SATD annotations?

To address RQ5.4, we follow two different approaches, i.e., (i) we study the
sentiment polarity of the 1038 SATD comments used for addressing RQ5.1,
and (ii) we use a survey asking respondents to draft SATD comments for
different scenarios. The latter is used since that, within a specific open-
source project, developers might not feel free to express the emotions they
experience [114]. We consider as non-negative all comments merely stating
the problem or suggesting an improvement, e.g., “TO DO : delete the
file if it is not a valid file”, while we consider as negative all comments
expressing a negative attitude, e.g., “TODO : YUCK!!! fix after HHH-1907
is complete”.
From the answers given by our survey respondents to RQ5.2 we learn that
open-source developers use links to external systems, such as bug identifiers,
to annotate high priority SATD. Moreover, in a survey-based study on task
annotations, Storey et al. [255] found that developers tend to include addi-
tional references or information in task annotations. To better understand
this phenomenon we investigate our last research question:

RQ5.5: To what extent do SATD annotations belonging to dif-
ferent categories contain additional details?

To address RQ5.5, we combine manual and automatic labeling of the com-
ments from the dataset of da S. Maldonado et al. [67] with manual labeling
of the comments drafted by the survey respondents.
By studying the annotation practices of developers we hope to better un-
derstand how developers use and perceive different kinds of SATD. In turn,
this should help developers better triage and prioritize TD, and allow re-
searchers to better understand how SATD containing negative sentiment
influences, and is perceived by, developers. The full dataset, files used dur-
ing the annotation, and qualitative data gathered during the survey, are
publicly available.2

2https://figshare.com/articles/online_resource/Self-Admitted_
Technical_Debt_and_Comments_Polarity_An_Empirical_Study/17024294

https://figshare.com/articles/onli ne_resource/Self-Admitted_Technical_Debt_and_Comments_Polarity_An_Empirical_Study/17024294
https://figshare.com/articles/onli ne_resource/Self-Admitted_Technical_Debt_and_Comments_Polarity_An_Empirical_Study/17024294

116 CHAPTER 5. SATD AND POLARITY

RQ1: SATD
content

Card
Sorting

RQ2: SATD
practices

Sentiment
classification

RQ3: negative
SATD

practices

RQ4: polarity
in different
SATD types

RQ5: SATD
annotation

details

Annotation
Classification

questions vignettes

Survey with 46 OSS developers

SATD dataset
(1038

comments)

Open
Coding

Sentiment
classification

Annotation
Classification

Figure 5.1: Methodology

5.2 Study Design

To address the research questions stated in the introduction, we combine
two different analyses, as depicted in Fig. 5.1. On the one hand, we take a
sample of 1038 from an existing curated dataset of SATD comments [67],
and categorize their content (to address RQ5.1, and, by further classifying
the presence of additional references in the comments, RQ5.5), and senti-
ment (to address RQ5.4). On the other hand, we survey 46 open-source
developers to understand their perception to negative sentiment in SATD,
and way they express priority in SATD. The survey is composed of two
parts: (i) questions about SATD practices (addressing RQ5.2 and RQ5.3),
and (ii) vignettes [223, 174, 200] depicting realistic scenarios where de-
velopers can admit TD, and for which we ask survey participants to write
possible SATD comments. The latter further contribute to answering RQ5.4
and RQ5.5.

5.2. STUDY DESIGN 117

Table 5.1: Number of SATD comments in the original dataset and in the
sampled ones.

SATD Type Initial Dataset Without Duplication Sampled
Defect 472 350 116 (11%)
Design 2703 2260 657 (63%)
Documentation 54 49 39 (4%)
Implementation 757 550 183 (18%)
Test 85 80 43 (4%)
Total 4071 3289 1038

5.2.1 Addressing RQ5.1: SATD content coding

To study the content of SATD comments we take an existing dataset of
SATD comments and perform open coding of this dataset.

Dataset

We start from a curated dataset of SATD comments by da S. Maldonado
et al. [67], consisting of 4071 SATD comments belonging to 10 different
open-source Java projects. These comments were classified by da S. Mal-
donado et al. [67] into five categories (Defect, Design, Documenta-
tion, Implementation, and Test). Note that Implementation debt
also includes Requirement debt from the original taxonomy of da S. Mal-
donado and Shihab [66].

First, we remove 782 duplicated comments (i.e., comments having the same
content but attached to different source code elements) since our focus
is on the comments’ content. After the removal, we manually analyze
a statistically significant random-stratified sample (strata are the SATD
comments types in the initial dataset) accounting for 1038 SATD comments
(confidence interval of 3.33% for a confidence level of 99%). Specifically,
as reported in Table 5.1, our sample has the same percentage of SATD
comments types as the initial dataset, guaranteeing that each SATD type is
well represented in our study. For instance, our dataset without duplication
counts 350 SATD belonging to Defect, i.e., ≃ 11% over the total number
of SATD comments (3289), and in our sample, we have manually analyzed
116 SATD comments in the same category that accounts for 11% of the
total number of SATD comments being analyzed.

118 CHAPTER 5. SATD AND POLARITY

Data analysis

To derive a taxonomy for SATD contents, we follow a card-sorting proce-
dure, and specifically a cooperative (multiple annotators) open (no prede-
fined categories) card-sorting [245]. This step has been conducted by the
authors of the companion paper [90].

In the first round, two of the authors independently created labels for 108
SATD comments randomly chosen from the dataset without duplication
in proportion to each SATD type. Once completed, the two annotators
discussed their labels, i.e., also resolving inconsistencies and redundancies,
and grouped the tags into a hierarchy. After that, two different authors
reviewed the initial set of created labels, in turn suggesting improvements,
obtaining a taxonomy featuring 11 high-level categories specialized into 26
sub-categories.

In the second round, two authors used the first version of the taxonomy
to label a different set of 115 SATD comments randomly picked from the
dataset without duplicated instances and, again in proportion to each SATD
type. Specifically, while reading a SATD comment content, the annotator
could choose to reuse an existing label or to add a new one. Upon com-
pletion, the two annotators solved inconsistencies and evaluated the intro-
duction of newly added labels. The updated version of the taxonomy has
been sent to two different authors, that after some improvements ended
up with a taxonomy featuring ten high-level categories specialized into 28
sub-categories. More specifically, two high-level categories have been used
as specializations of other categories and one has been added (see details
in the online dataset).

In the third round, using the same process, the authors manually analyzed
114 SATD comments. As a result, they obtained a new modified version of
the taxonomy made up of 11 high-level categories, of which two are newly
introduced ones and one became a sub-category. The high-level categories
were properly specialized into 36 sub-categories, five of which were not
reported in the previous version.

This final version of the taxonomy has been used to label the remaining
701 comments that were randomly assigned to four authors, such that
each SATD comment was independently analyzed by two of them. Also
in this case, the annotators could either use the existing labels or create a
new one if no one fitted a specific comment. As it happens in teamwork

5.2. STUDY DESIGN 119

card-sorting [245], newly introduced labels (groups) became immediately
available also for other annotators. Upon completion, the annotators dis-
cussed their classifications resolving inconsistencies, and revised the tax-
onomy. During the last round, the authors did not introduce any new
high-level category while using two of them to specialize existing ones, even
if there is the introduction of two new sub-categories. In summary, since
in our last round no new high-level categories are introduced, the identi-
fied taxonomy is general enough. However, this does not exclude that, in
the future, further contents could emerge and be therefore included in the
taxonomy.

To address RQ5.1, we present our final version of the taxonomy, reporting
for each category the number of SATD comments belonging to it together
with some examples aimed at explaining the meaning of the category.

5.2.2 Addressing RQ5.2 and RQ5.3

Table 5.2: Survey Questions

When writing source code, how often do you write
source code comments indicating delayed or in-
tended work activities such as TODO, FIXME, hack,
workaround, etc.?

Never, Rarely (Less
than once a month),
Sometimes (Monthly),
Often (Weekly), Very
often (Daily)

When authoring comments that describe a problem,
how often do you write negative source-code com-
ments indicating delayed or intended work activities
such as TODO, FIXME, hack, workaround, etc.?

Never, Rarely (Less
than once a month),
Sometimes (Monthly),
Often (Weekly), Very
often (Daily)

How often do you come across negative source-code
comments indicating delayed or intended work activi-
ties such as TODO, FIXME, hack, workaround, etc.?

Never, Rarely (Less
than once a month),
Sometimes (Monthly),
Often (Weekly), Very
often (Daily)

Question Response Type

Continued on next page

120 CHAPTER 5. SATD AND POLARITY

Table 5.2: Survey Questions (continued)

Suppose you believe that an issue requires extra prior-
ity, how would you usually indicate this in a comment
indicating delayed or intended work activities such as
TODO, FIXME, hack, workaround, etc.?

Open-text

While writing a comment describing an issue in the
source-code, I am more likely to write negative com-
ments for issues that I believe are more important.

Strongly disagree, Dis-
agree, Neutral, Agree,
Strongly agree

Writing negative comments to assign extra priority to
issues in the source-code is an acceptable practice.

Strongly disagree, Dis-
agree, Neutral, Agree,
Strongly agree

Whenever I come across a source-code comment de-
scribing a problem that is particularly negative, I inter-
pret this as a more important issue than a source-code
comment describing a problem that is more neutral.

Strongly disagree, Dis-
agree, Neutral, Agree,
Strongly agree

Question Response Type

For both RQ5.2 and RQ5.3, we seek to understand how developers annotate
SATD that is more important, and whether they believe the annotation of
TD with negative sentiment is an acceptable practice. Therefore, we use a
survey to ask open-source developers whether they use a negative sentiment
as a proxy for SATD priority and whether they consider the expression of
negative sentiment in annotating TD as an acceptable practice. Specifically,
we ask the questions shown in Table 5.2.

To learn the methods used by open-source developers to annotate high
priority SATD (RQ5.2), two authors performed an open card-sort [245] on
the responses to the open-question on how developers annotate high priority
TD, and a third author resolved the conflicts. Each response can be assigned
to multiple cards, based on the content of the answer being provided. As it
is widely hypothesized that negative sentiment in SATD is used to indicate
priority [94, 270, 150], we augment the open question with a set of closed
questions on whether developers interpret negative sentiment as a proxy for
priority, as well as, whether they are more likely to write negative SATD for
high priority issues.

Finally, the closed questions on whether developers consider the expression
of negative sentiment in SATD as an acceptable practice, and how fre-

5.2. STUDY DESIGN 121

quently developers come across or author negative SATD allows us to de-
termine whether open-source developers believe that this is an acceptable
practice (RQ5.3). We statistically compare the three distributions (SATD
annotation, SATD negative annotation, and encountering negative SATD)
using (a) a combination of the Kruskal-Wallis test (1952) with three post-
hoc pairwise Wilcoxon rank-sum tests with the p-values adjusted to control
for the false discovery rate, as recommended by Benjamini and Hochberg
[35], and (b) a more recently proposed multiple comparisons method of
Konietschke et al. [130].

5.2.3 Addressing RQ5.4

To address RQ5.4, we need to understand whether negative sentiment is
more or less likely to occur for specific categories of SATD. To this aim, we
analyze the sentiment of comments from the dataset of da S. Maldonado
et al. [67] and from a set of SATD comments drafted by respondents of
the survey. This way, we combine results of two different kinds of studies,
i.e., one conducted by mining SATD comments from real projects, and an-
other in which survey participants are involved. Section 5.2.3 discusses the
labeling protocol used to assign a sentiment polarity to SATD comments.
The labeling procedure was originally consolidated on the set SATD com-
ments from da S. Maldonado et al. [67] and then applied to annotate also
the SATD comments collected through the survey. Section 5.2.3, instead,
discusses the survey in which we ask respondents to draft SATD comments.
We would like to emphasize that, albeit obtained using the same protocol
and guidelines, the negative sentiment distribution in the two datasets of
SATD comments collected through software repository mining and survey,
respectively, might not be directly comparable. Specifically, differences in
the proportion of labels that we might observe could be related to the fact
that each category in our taxonomy is made up of several different sub-
categories, each one representing a specific development scenario. In our
survey, we could address only a selection of such scenarios depicted by our
vignettes (detailed in Table 5.3). As such, the SATD scenarios included
in the Maldonado et al. dataset are higher in number (and more diverse
in terms of specific SATD sub-categories) than the ones included in our
survey.

122 CHAPTER 5. SATD AND POLARITY

Sentiment labeling of SATD

To address RQ5.4, all 1038 comments sampled from the dataset of da S. Mal-
donado et al. [67] for RQ5.1 have been manually annotated with their sen-
timent polarity (Section 5.2.1), together with the comments drafted by the
respondents of the survey (Section 5.2.3). In principle, we could have used
automated tools to classify comments’ polarity. However, previous work
has shown that even SE-customized sentiment analysis tools may fail to
produce a reliable annotation [151], especially if they are fine-tuned using a
gold standard collected on a platform that is different from the one targeted
for the study [189]. For this reason, we decided to perform a prelminary
assessment of the performance of publicly available, SE-specific tools for
sentiment analysis, as described in the following. To this aim, we leverage
a multiple annotator manual analysis and to create a gold standard against
which to compare the outcome of three publicly available sentiment analysis
tools that have been specifically tuned for the software engineering domain,
i.e., SentiStrength-SE [120], Senti4SD [43], and SentiCR [17].
By definition, SATD describes an undesirable situation, so we do not expect
to observe many positive comments and opt to classify sentiment as either
negative or non-negative, where the latter category includes both positive
and neutral comments. Comments conveying both positive and negative
sentiment are labeled as mixed. We label as negative, comments containing
expressions that clearly communicate negative sentiment, e.g., emotions or
negative opinions about the underlying code, beyond the negativity inherent
in problem reporting, e.g., SATD comments.
Determining sentiment for a text is a subjective task, i.e., the labels given by
individuals depend on their cultural background, upbringing, and interpre-
tation of the comment [230]. As such, following clear annotation guidelines
is recommended for enabling reliable annotation [191]. For this reason, we
defined a set of annotation guidelines by conducting a pilot labeling study.
We randomly sampled 32 comments from the 1038 comments of the dataset
of da S. Maldonado et al. [67] and asked each author to label them individ-
ually, based on their subjective perception of each comment polarity. Then,
we jointly discussed disagreements in a plenary session, resolving conflicts
and addressing ambiguities in the definition of negative sentiment. Based
on the results of our discussion, we drafted our coding guidelines to be used
for the labeling study as follows:

• negative: the comment expresses negative sentiment about the un-

5.2. STUDY DESIGN 123

derlying source-code (e.g., “this method is a nightmare”); specifically,
we considered the following factors: terms highlighting urgency (like
the presence of terms such as “asap” and “urgent”), the presence of
multiple exclamation and question marks, as well as, the presence of
some keywords being reported in upper case such as the term NOT
in the comment: “// the plot field is NOT tested”;

• non-negative: the comment expresses either positive or no sentiment
about the code referenced in the comment (e.g., “TODO: Why is this
a special case?”);

• mixed : the comment expresses both positive and negative sentiment
(e.g., “This is a fairly specific hack for empty string, but it does the
job”).

We used the 32 SATD comments manually labeled during our pilot to eval-
uate the accuracy of the selected SE-specific sentiment analysis tools. We
apply the tools “off-the-shelf”, i.e., without further tuning or training [190].
Looking at the agreement between manual labels and the tools’ predictions,
we found that Senti4SD has the highest F-1 score (0.69), lower than the
one reported by the authors of the tool (0.87) on the original training plat-
form [43], i.e., Stack Overflow. By inspecting disagreements we found that
some negative comments were missed by the tool due to the presence of a
lexicon which is specific to SATD comments. For instance, “FIXME: Big
fat hack here, because scope names are expected to be interned strings
by the parser” is labeled as negative by the human judges but classified
as non-negative by Senti4SD. We conclude that the operationalization of
sentiment by tools does not align with our operationalization of sentiment
in SATD. For this reason, we decide to manually label both the remaining
SATD comments in the dataset and the SATD comments drafted by the
developers in the survey.

To label the 1038 comments from da S. Maldonado et al. [67], we divide
the comments in our sample, excluding the ones already labeled in our pilot
study (1006), over six annotators, including the authors of this chapter, such
that each annotator labeled an equal number of comments per SATD cate-
gory, and each comment was labeled by at least two annotators, to mitigate
the presence of any biases between annotators and over SATD categories.
Moreover, to ensure reliability and consistency of our labeled dataset, we
resolved all disagreements in plenary sessions involving all annotators. The
agreement between the annotators for the sentiment labeling of the com-

124 CHAPTER 5. SATD AND POLARITY

ments from the dataset of da S. Maldonado et al. [67] is moderate, with a
Krippendorff’s α of 0.455 [131], which is in line with agreement reported
by previous studies on developers’ sentiment annotation in short comments
from software development platforms [183]. Lastly, to understand for what
SATD categories negative sentiment is more likely to occur, and how this
differs over the SATD categories of the taxonomy constructed in RQ5.1, we
use a pairwise proportion test [186]. Specifically, for each category, we com-
pare the proportion of negative and non-negative comments. Because of the
multiple comparisons, we control for the false discovery rate by adjusting
the p-values using the Benjamini-Hochberg procedure [35]. The Benjamini-
Hochberg procedure adjusts the p-values as follows: Let p1, .., pn be a
collection of p-values ordered from the smallest to the largest one. For pi

the adjusted value p′
i is computed as pi ∗ n/i (topped at 1). Hence the

largest p-value of the collection is never modified, and the smallest p-value
is increased most.

Survey

In addition to the survey questions described in Section 5.2.2, we ask the
respondents to draft SATD comments for five different scenarios selected
from the taxonomy identified in RQ5.1. Specifically, we took the five most
populous categories and, for each of them, we designed a vignette repre-
senting the category [223] (see Table 5.3).

Table 5.3: Vignettes used in the survey to describe different SATD cate-
gories.

Functional issue You are working on an open-source mail client and
you are working on a new feature. You observe that
the auto-completion of e-mail addresses is broken:
It should complete addresses using e-mail addresses
from the address book and e-mail addresses used re-
cently. However, it only uses addresses from the ad-
dress book for the auto-complete. You do not have
time to fix this immediately.

SATD-Category Vignette

Continued on next page

5.2. STUDY DESIGN 125

Table 5.3: Vignettes used in the survey to describe different SATD cate-
gories. (continued)

Partially/not
impl. func.

You are working on an open-source mail client. You
observe that one method is not yet finished: If the
method detects invalid input it should raise a dialog
window, and this is not currently implemented. You
do not have time to fix this immediately.

Poor impl. choice You are working on an open-source diagramming ap-
plication. You observe that a code fragment is copied
over and over again. You do not have time to refac-
tor this immediately.

Documentation You are working on an open-source diagramming ap-
plication. You observe that there is a method without
any documentation, in violation of the agreed upon
coding guidelines. You do not have the time to read
the method and write the documentation yourself.

Wait While working on an open-source Java GUI applica-
tion and you are implementing a new feature, how-
ever, to implement this feature you are dependent on
an external API that is not yet available.

SATD-Category Vignette

During the survey we only showed the respondents the text of the vignette
but not the category name, to ensure that respondents are not biased by
the category name. For each vignette, we want to understand the TD
comments that developers would write. Hence, after each vignette we also
ask the following three questions:

(a) How likely will you add a comment recording this observation? Very
unlikely, Somewhat unlikely, Neither likely nor unlikely, Somewhat
likely, Very likely.

(b) What are your reasons for deciding to write a comment or not? Open-
text.

(c) If you would add a comment, please draft the comment you would
add in this situation? Open-text.

126 CHAPTER 5. SATD AND POLARITY

For each vignette, we label the comments written for question (c) with
their sentiment polarity using the labeling procedure and operationalization
of sentiment described in Section 5.2.3. Agreement between the annota-
tors, over the SATD comments drafted for the survey was moderate with a
Krippendorff’s α of 0.503 [131]. Additionally, to learn whether negative sen-
timent is more likely to occur in specific categories we use a set of pairwise
proportion tests [186], similarly to Section 5.2.3.

To ensure that the order of the vignettes does not impact the results ob-
tained from the survey we create several survey variants in which we shuffle
the order of the vignettes. In the analysis, we merge the results of the
surveys with a different vignette order if there are no differences between
the responses given for different survey variants corresponding to different
orders. To determine whether the order in which we present the vignettes
to the users influences the results we apply PERMANOVA [23], which is a
non-parametric equivalent to the Analysis of Variance (ANOVA). For each
vignette we apply PERMANOVA with the dependent variable being the re-
sponse to the closed question, i.e., “How likely will you add a comment
recording this observation?”, and the independent variable being the order
in which the vignette was present in the survey. To account for the mul-
tiple comparisons we adjust p-values using the Benjamini-Hochberg proce-
dure [35]. For the vignette(s) where we find that the order influences the
responses, we apply a post hoc pairwise PERMANOVA to determine which
variants can be safely combined because the differences in the vignettes or-
der did not influence the answers to the closed questions. When discussing
the results we consider these subgroups separately.

5.2.4 Addressing RQ5.5: Identifying Additional Details in SATD

Developers use external references to annotate SATD that they believe is
more important, including links to bug trackers, or bug ids. Additionally,
from work by Storey et al. [255], we know that developers tend to include:
(i) references to another class, method, plug-in, or module, (ii) developers’
names or initials, (iii) references to bugs, (iv) URLs, (v) dates, and (vi)
“memorable keywords” in SATD.

To understand how often these additional details occur in SATD we use a
combination of manual labeling and automated detection to extract fields
(i) through (vi) from the 1038 SATD comments. Due to the heterogeneity
(as well as our unfamiliarity) with the practices of the projects that make up

5.2. STUDY DESIGN 127

the dataset, and considering that in SATD comments keywords are mainly
related to tags, e.g., TODO, FIXME, XXX etc. we have chosen to not
identify “memorable keywords”.

Firstly, we identify the following fields automatically:

• for class names, we search for all possible class names of a project, ob-
tained from its git repository (all file versions from all branches), onto
comments, using a case insensitive, word boundary match, and for
methods references we use a simple regular expression (“\\w +\\(”,
matching all words that contain one or more alphanumeric characters
followed directly by an opening parenthesis);

• for bug references, we use the Fischer et al. approach [86], e.g.,
matching JIRA-style references (e.g., “jruby-1234”) or GitHub-style
reference (e.g., “#1234”);

• for URLs we match the following two regular expressions onto the
SATD comments, i.e., http:// and https://.

Also, while we initially detected bug-ids and dates (in this case matching
various formats as “03 Dec 1993”, or “19940621”) automatically, we double-
checked them manually because of the presence of several formats.

Based on a manual inspection of the dataset, we combine the results of the
automatic detection with the manual labeling. Specifically:

(i) for class/method names and URLs we use the automated detection;

(ii) for developers names/initials and dates we rely on the manual labeling;

(iii) for bug-ids we combine the manual analysis with the automatic de-
tection.

We report the occurrences of each field for each high-level category of the
taxonomy, and evaluate how the perceptions of developers, as found by
Storey et al. [255], compare to the occurrences of these fields in the 1038
SATD comments.

Additionally, to understand how developers annotate SATD when they are
asked to write comments in a more neutral setting, we manually label the
comments drafted by respondents in Section 5.2.3 for the presence of names,
dates, and references to bugs.

128 CHAPTER 5. SATD AND POLARITY

5.2.5 Survey Preparation and Sampling
To verify whether the survey discussed in Section 5.2.2 and 5.2.3 was un-
derstandable for developers, and to ensure that the survey takes ca. 10–15
minutes to complete we asked two non-academic developers to fill out a
drafted version of the survey. Based on their feedback, we modified the
wording of several questions to make the survey more clear.

The survey itself was prefaced with an informed consent form that is in-
cluded as an appendix in the replication package and the survey has been
approved by the Ethical Review Board of the first author’s institution. The
population we target for this study are open-source developers, to make
results comparable with the quantitative analysis conducted on the Mal-
donado et al. dataset. To reach developers within this population we used
the following platforms:

• We sent out emails to the mailing lists of open-source software projects.
The list of projects is identical to the list that was used for the study
of Zampetti et al. [291]. This list also includes the mailing lists of
five out of ten projects from the Maldonado et al. dataset (i.e., the
ones for which we were able to access the mailing list) we used for the
other part of the study. We did not limit survey participation to the
projects from the Maldonado dataset to ensure larger participation
in the survey. In total, we invited the developers of 93 open-source
through the respective mailing lists, Discord, Slack, and Google Group
channels.

• We posted the link to the survey to several Facebook and LinkedIn
groups, which target open-source developers.

• We posted the survey on the Twitter accounts of the authors.

• We asked personal contacts for which we know that they contribute
to open-source projects to fill out the survey.

Note that the question about how often respondents author SATD has
been already posed before in a different study [64]. However, we include
this question to understand whether our respondents are as familiar with
SATD as in previous studies.

Finally, to ensure that we target only open-source developers we include a
screening question asking whether the respondent contributed in an open-
source project in the past three months. Moreover, to ensure that we collect

5.3. STUDY RESULTS 129

no personal information we did not include any question asking about de-
mographics, such as age, gender, or experience. In the authors’ experience,
the latter favors larger participation. Moreover, it was a constraint for the
approval by our ethical committees.

5.3 Study Results

This section reports and discusses the study results, addressing the research
questions formulated in the introduction.

5.3.1 Survey Responses

In total we obtained 46 responses to the survey, and in this section we
discuss whether the order in which we presented the vignettes of the survey
influenced the results obtained. None of the questions was mandatory, hence
the number of responses for different questions might vary.

After the application of PERMANOVA [23] to the five vignettes described
in Section 5.2.3 we find that the responses for the vignettes of the macro-
categories: Poor implementation choices, Partially implemented, Functional
issues, and Wait, belonging to the different pools having a different ordering,
can be safely analyzed together, as the corresponding p-values are 0.71,
0.71, 0.52 and 0.95, respectively, i.e., all of them exceed the customary
threshold of 0.05.

The responses to the macro-category Documentation are dependent on the
order in which the vignette was included in the survey (p ≃ 0.03), and there-
fore we cannot merge all responses obtained for this vignette in different
survey variants. The post hoc analysis revealed that there is a statistically
significant difference between the answers obtained when the Documenta-
tion vignette is shown at the beginning of the survey, as the first or the
second vignette (subgroup A—36 responses), as opposed to the answers
obtained when the Documentation vignette is shown last (subgroup B—10
responses). We hypothesize that this difference can be attributed to how
developers were biased by seeing documentation-related vignettes after hav-
ing seen vignettes related to more critical issues (e.g., functional TD). In
such cases, respondents might have been tempted to say that documenta-
tion is not important enough to write a SATD comment for. In conclusion,
for this specific case, the ordering has influenced the results.

130 CHAPTER 5. SATD AND POLARITY

Functional
Issues

Bug to fix

Fix to
postpone

May be
a bug

Compatibility/
dependencies

56

11

9

41

18

Lack/unclear
doc

Inconsistent
doc

Won’t
modify doc

50

3

1

Documentation
issues

0

Improve
tests

Test case
bugs

Disalign.
prod/test

code

29

3

2

Testing
issues

2

Req. -
Implementation

Design -
Implementation

12

9

Misalignment

0

Poor
implementation

solution

Poor
API usage

Code review
needed

Maintainability
issues

Performance
issue

Usability

Won’t improve
the code

79

14

70

207

34

1

2

Poor
implementation

choices
22 Works only under

specific
conditions

Functional issue
elsewhere

Pre-condition
missing

Post-condition
unchecked

Incomplete
exception
handling

61

4

36

4

19

Partially/not
implemented
functionality

105

Fix an
open issue

For another
feature

For regression
tests

Temporary
patch

For the
next release

For a
proper API

To address
different
SATDs

7

16

1

51

4

4

2

For API
update

3

Wait

1

SATD
comments
outdated

3

Deployment
issues

2

Taxonomy

Figure 5.2: Discussions contents in SATD comments

5.3. STUDY RESULTS 131

5.3.2 RQ5.1: What kind of problems do SATD annotations
describe?

Fig. 5.2 depicts the taxonomy of SATD comments’ content, obtained as de-
scribed in Section 5.2.1: the small red boxes of Fig. 5.2 indicate the number
of SATD comments (out of 1038) belonging to each category. Table 5.4,
instead, shows the distribution and mapping between our high-level cate-
gories and the categories provided by da S. Maldonado et al. [64]. Note
that, for some comments, we were not able to assign the leaf category while
only the higher-level category. For instance, the SATD comment: “TODO:
implement the entity for the annotation” in jfreechart reports that the
functionality is only partially implemented but does not contain any other
information aimed at justifying why that happened.

Although our data came from a curated dataset [64], we still found 40
instances that, according to our manual analysis, were not related to SATD
(i.e., labeled as false positives). For instance, “Required otherwise it gets
too wide” in sql describes the design decision without indicating that it is
suboptimal in any sense.

While (not surprisingly) most SATD comments highlight poor implemen-
tation choices (429 over 1038) mainly related to maintainability issues, as
well as partially/not implemented functionality (229), we notice that func-
tional issues (135) are not so frequent in our sample. Furthermore, we
found 89 SATD comments classified as “Wait”, meaning that a developer
cannot improve the code or complete a functionality since they are waiting
for a different event that has to occur in the same project or in a third-
party component (e.g., “this is the temporary solution for issue 1011” in
jfreechart). As also reported in previous work [32, 66, 283], developers
tend to admit TD also in artifacts that are different from the production
code: indeed, we found 54 SATD comments dealing with documentation
issues, and 36 SATD comments related to the test code. Finally, we found
21 SATD comments describing misalignment between requirements and de-
sign or implementation, as well as problems with deployment (2) and SATD
comments that are left in the code while not describing a TD anymore
(3).

Next, we elaborate on each of the nine high-level categories of our taxon-
omy.

Poor implementation choice. This category includes (i) maintainability

132 CHAPTER 5. SATD AND POLARITY

issues, (ii) poor implementation solutions, (iii) asking for code review, i.e.,
the developer is not sure of the actual design, (iv) performance issues, (v)
poor API usages, i.e., reliance on a third-party component without actually
understanding the proper way to use it, (vi) lack of intention to improve
the code despite the awareness that it is not in the right shape, and (vii)
usability issues.

Maintainability issues constitute the category with the highest number of
samples, not merely within “Poor implementation choices” but overall, cov-
ering 20% of the comments. The latter is in line with the results reported by
Zampetti et al. [291] highlighting that more than 60% of the open-source
developers in their study use annotations to indicate the need for maintain-
ability improvement. Unsurprisingly, many maintainability issues require a
refactoring activity such as a better distribution of responsibilities among
software components (e.g., “TODO: We should have all the information
that is required in the NotationSettings object” in argouml), proper reuse
of features (e.g., “TODO: Reuse the offender List” in argouml), or else
the replacement of magic numbers with proper constant variables (e.g., “//
TODO: define constants for magic numbers” in argouml).

Furthermore, we found 79 SATD comments reporting that the implemented
solution has to be improved, e.g., “EATM This might be better written as
a single loop for the EObject case” in emf highlighting the need for sim-
plifying the actual implementation removing a control structure. In other
cases, the developers criticize the implementation choices and ask for a
code review, e.g., “FIXME: Is “No Namespace is Empty Namespace” really
OK?” in apache-ant or “TODO: this assumes ranges are sorted. Is this
true?” in argouml. The latter confirms the findings by Ebert et al. [78]
who highlight that 8% of questions during code reviews express attitudes
and emotions. Specifically, their manual coding shows that developers ex-
press doubts through criticisms (≃ 5%) inducing critical reflection in the
interlocutor.

Finally, concerns related to the use of APIs and performance are reflected in
the SATD comments: e.g., “FIXME: don’t use RubyIO for this” in jruby
alerts developers to replace the existing API for a specific task, while “TODO
replace repeated substr() above and below with more efficient method”
in jmeter indicates performance issues.

Partially/Not implemented functionality groups the SATD comments
reporting that a feature is not ready yet. While, on the one hand, we found

5.3. STUDY RESULTS 133

Table 5.4: Distribution of our taxonomy top-level categories and how they
map onto da S. Maldonado et al. [67] categories.

Macro-category Defect Design Doc. Impl. Test Total
Poor implementation choices 22 361 2 43 1 429
Partially implemented 27 94 5 100 3 229
Functional issues 48 68 0 18 1 135
Wait 6 76 0 6 1 89
Documentation issues 0 19 30 4 1 54
Testing issues 0 1 0 0 35 36
Misalignment 1 13 2 5 0 21
SATD comments outdated 2 1 0 0 0 3
Deployment issues 1 0 0 1 0 2
False positive 9 24 0 6 1 40
Total 116 657 39 183 43 1038

many cases (105) in which the SATD comment simply reports that the
implementation is missing without adding any further details, on the other
hand, we found comments indicating what is specifically missing from the
implementation: e.g., a precondition (“TODO: delete the file if it is not
a valid file” in ant), or a postcondition check (“FIXME: Make bodyNode
non-null in parser” in jruby).

We found comments clarifying that the feature works only under specific
conditions (61) as “If c2 is empty, then we’re done. If c2 has more than one
element, then the model is crappy, but we’ll just use one of them anyway”
in argouml. Our results are in line with findings from Zampetti et al.
[291] who report that about half of their survey respondents use SATD to
report incomplete features, as well as, features exhibiting incorrect behavior
under certain conditions.

Finally, some comments (4) indicate that the implementation is absent due
to problems elsewhere: e.g., “Predecessors used to be not implemented,
because it caused some problems that I’ve not found an easy way to handle
yet. The specific problem is that the notation currently is ambiguous on
second message after a thread split.” in columba.

Functional issue includes all cases directly or indirectly related to the pres-
ence of a bug in the system and constitutes the third-largest category of
SATD comments in our taxonomy. Unsurprisingly, most of them highlight
the presence of a bug that should be fixed immediately, (i.e., 56 comments

134 CHAPTER 5. SATD AND POLARITY

belonging to the Bug to Fix category): e.g., “FIXME: If NativeException
is expected to be used from Ruby code, it should provide a real allocator to
be used. Otherwise Class.new will fail, as will marshaling. JRUBY-415” in
jruby. 11 SATD comments, instead, indicate the presence of misbehavior
that is acceptable even though a better solution must be found, i.e., Fix to
postpone: e.g., “this will generate false positives but we can live with that”
in ant.
The most interesting sub-category groups compatibility and dependency is-
sues that are also not very easy to address (41 SATD comments). For
instance, we found comments indicating that the code is not able to work
properly in specific environments, e.g., “waitFor() hangs on some Java
implementations” in jEdit, or cases where the actual implementation in-
herits a bug from an external API being used, e.g., “Workaround for JDK
bug 4071281 [...] in JDK 1.2” in jEdit.
Wait includes all SATD comments in which the developer reports that the
code has to be improved and/or completed once a different event occurs. In
many cases (51) the comments report that the code is a temporary patch
that needs to be removed later on, e.g., “TODO: temporary initial step
towards HHH-1907” in hibernate. Furthermore, 16 comments state that
the code is not in the right shape since it requires a different feature to be
ready first, e.g., “todo : remove this once ComponentMetamodel is com-
plete and merged” in hibernate. There are also seven SATD comments
where developers admit the presence of a TD in the code that cannot be
addressed before an issue already opened is not fixed, e.g., “// TODO:
This whole block can be deleted when issue 6266 is resolved” in argouml.
Differently from the comments belonging to the Fix to Postpone leaf in
the Functional issue category where the TD corresponds to the functional
issue for which developers do not have to rush to fix them, in this case
the functional issue is simply the event developers are waiting for before
removing a TD from the code. An interesting phenomenon related to wait-
ing is an SATD comment requiring other SATD comments to be fixed (2),
e.g., “TODO: simply remove this override if we fix the above todos” in
hibernate. We found four comments in which developers need to wait for
a proper API to be found, e.g., “This really should be Long.decode, but
there isn’t one. As a result, hex and octal literals ending in ’l’ or ’L’ don’t
work.” in jEdit. Differently from the comments belonging to the Poor API
usage leaf under the Poor Implementation Choices category where the TD
corresponds to an inappropriate API usage, here we group comments where

5.3. STUDY RESULTS 135

developers admits the presence of a workaround that must be removed once
an appropriate API is found, i.e., the external event developers are waiting
for.

Recently Maipradit et al. [163] have looked at “on-hold” SATD, i.e., debt
containing a condition highlighting that a developer is waiting for a certain
event or an updated functionality having been implemented elsewhere, that
maps onto our “Wait” category. Our results confirm what found by Maipra-
dit et al. [163], i.e., around 8% of the SATD comments contains a waiting
condition, however, our taxonomy enlarges the set of possible events a de-
veloper is waiting for, indeed Maipradit et al. [163] only considered bugs to
be fixed, or new releases/versions of libraries.

Documentation issues (54 over 1038). Many cases are related to the
need for documenting a specific method/class such as “FIXME This func-
tion needs documentation” in columba. However, we also found three
cases describing inconsistencies in the related documentation, e.g., “UML
1.4 spec is ambiguous - English says no Association or Generalization, but
OCL only includes Association” in argouml, and one case in which the
author is reporting that the documentation cannot be modified even if it is
required to modify it, i.e., “TODO: Currently a no-op, doc is read only” in
argouml.

Testing issues. 36 SATD comments refer to test code, including (i)
untested features, e.g., “TODO add tests to check for: - name clash -
long option abbreviations/” in jmeter, (ii) bugs in the current test suite,
e.g., “this is the wrong test if the remote OS is OpenVMS, but there
doesn’t seem to be a way to detect it” in ant, or (iii) misalignment of
the test code with the production code, e.g., “TODO: [...] An added test
of isAModel(obj) or isAProfile(obj) would clarify what is going on
here” in argouml.

Misalignment groups the SATD comments in which the developers re-
port a mismatch between (i) requirements and implementation (12) such
as “TODO: The Quickguide also mentions [...] Why are these gone?” in
argouml, where the developers ask whether the current implementation
deviates from what was reported in the specification, or (ii) design and
implementation (9) such as “TODO: This shouldn’t be public. Compo-
nents desiring to inform the Explorer of changes should send events” in
argouml, clearly highlighting a deviation from what was reported in the
design document.

136 CHAPTER 5. SATD AND POLARITY

We also found three instances belonging to outdated SATD comments
in which the SATD comment no longer reflects the source code evolution
e.g., “todo: is this comment still relevant ??” in ant. This category
generally belongs to the problem of comments being outdated with respect
to source code. For simple cases, especially related to comments explaining
statements’ behavior, detection approaches have been proposed [87] and
empirical studies have been carried out. As regards SATD, it is still possible
that in many circumstances SATD comments remain in the system even
after the mentioned problem has been addressed.

Two SATD comments reporting Deployment issues: the first one in ar-
gouml (i.e., “As a future enhancement to this task, we may determine
the name of the EJB JAR file using this display-name, but this has not
be implemented yet.”) highlights the need for improvements to the overall
deployment phase while constructing the application jar. The second one in
ant (i.e., “the generated classes must not be added in the generic JAR! is
that buggy on old JOnAS (2.4)”), reports about a problem while selecting
the components to involve in the jar.

To understand the difference between our categories and those by da S. Mal-
donado et al. [64], Table 5.4 shows how SATD comments belonging to dif-
ferent categories of their taxonomy are mapped to our high-level ones. Al-
though 48 over 116 SATD comments in the “Defect” category are mapped
onto our “Functional issues”, the remaining SATD comments are mainly
scattered onto the “Partially/not implemented functionality” and “Poor im-
plementation choices”. As an example of the former, the comment “TODO:
we didn’t check the height yet” in jfreechart, originally considered as a
defect SATD, has been categorized as a “Partially/not implemented func-
tionality” since its content has nothing reporting the presence of a bug in the
system due to the lack of a pre-condition check. As regards the latter, in-
stead, “TODO: This method doesn’t appear to be used.” in jmeter mostly
highlights possible maintainability issues, therefore it has been categorized
as a “Poor implementation choice”.

Similarly, while “Design” SATD comments mainly belong to our “Poor
Implementation Choices” category (361 over 657), some refer to waiting
(76), e.g., “Remember to change this when the class changes” in jmeter,
partially implemented functionality (94), e.g., “TODO: complete this” in
jfreechart or functional issues (68), e.g., “TODO - is this the correct
default?” in jmeter.

5.3. STUDY RESULTS 137

The “Implementation” SATD comments were originally labeled as “Require-
ment debt” by da S. Maldonado and Shihab [66] and then renamed in their
follow-up dataset. While, unsurprisingly, almost half of them belong to
our “Partially/Not implemented Functionality” (which is indeed requirement
debt, because the requirement has not been fully implemented), 43 cases are
related to poor implementation choices, hence not related to requirements.
For instance, there are comments in argouml asking for code review, e.g.,
“TODO: Why is this disabled always?”, or pointing out the presence of
maintainability issues, e.g., “TODO: Reuse the offender List.”

Finally, the categories of our taxonomy having a good fit with the ones of
Maldonado et al. are “Documentation issues” and “Testing Issues”. Still, in
jmeter we found a documentation debt, e.g., “TODO Can’t see anything
in SPEC”, we categorized as “Misalignment” since it relates to a discrepancy
between specification and implementation, and either of the two can be
wrong.

RQ5.1

We categorized the sample of 1038 SATD comments into nine top-
level categories, separating functional issues from partially imple-
mented functionality and poor implementation choices. We also con-
sidered on-hold TD (“Wait”) as a specific category with 89 instances,
while Documentation and Testing issues were almost mapped onto
the categories of da S. Maldonado et al. [64]. We noticed how
our content-based SATD categorization does not have a one-to-one
mapping to lifecycle-based categories.

138 CHAPTER 5. SATD AND POLARITY

5.3.3 RQ5.2: How do developers annotate SATD that they
believe requires extra priority?

Table 5.5: To express that SATD should have higher priority developers
recommend doing so outside of the source code or to use tags
such as TODO, FIXME, or XXX.

Should be discussed elsewhere (issue tracker, code review,
mail, PM, backlog, tests)

19

Tag 14
Should not be indicated in the source code (alternative
reporting mechanism is not indicated)

4

Rationale 2
Code should report an error 2
Not-ready work should not be merged 1
Tags make the code not ready to merge during code re-
views

1

Tag followed by the name of the person who has to address
it

1

Tag followed by the bug ID detailing the issue in the issue
tracking system

1

Use specific keywords in the comment like issue, ASAP
and high-priority

1

Card Sorting Code Occurrence

As explained in Section 5.2.2 to answer RQ5.2, we have asked developers
how they would indicate that a source code problem should be addressed
with high priority. As this was an open question we performed card sorting
among the provided answers, which results are summarized in Table 5.5.
Survey respondents recommend doing so outside of the source code or to use
tags such as TODO, FIXME, or XXX (with or without additional information
such as bug ID or name of the person responsible for fixing). Interestingly, a
small group of respondents suggests that high priority issues should prevent
the normal way of working through either run-time errors or blocking the
code from being merged.

5.3. STUDY RESULTS 139

0%10%20%30%40%50%60% 10% 20% 30% 40%
Percentage of Responses

I interpret negativity
as a proxy for priority.

I draft negative SATD
for important issues.

39%

27%

14%

18%

20%

25%

23%

20%

5%

9%

Strongly Disagree
Disagree
Neutral
Agree
Strongly agree

Figure 5.3: Negativity in SATD comments and their priority

To verify what conjectured in literature about the relationship between neg-
ative comments and priority [94, 270, 150], we asked developers whether
they are more likely to write negative comments for high-priority SATD com-
ments, as well as, whether they are likely to interpret negative comments
as conveying higher priority.

Each of these questions has been answered by 44 respondents out of 46.
By inspecting Fig. 5.3, it is possible to observe that 29% of the respondents
are more likely to express negativity when the issue has high priority and a
similar share of respondents (27%) will interpret negative SATD comments
as reflecting higher priority. Therefore, while the perception of negativity
as a proxy for priority is not necessarily shared by all developers, we can
still confirm the relation hypothesized in the previous work [94, 270, 150],
as there appears to be a sizable group of developers that are more likely to
write or interpret negative comments as reflecting high priority.

RQ5.2

Respondents confirmed use of tags in the source code to indicate
extra priority. However, nearly half of them indicate that it would
be better to open issues instead and, in some cases, to even avoid
merging a change if it is not ready. Furthermore, 29% of developers
reported that they would write a comment containing negative sen-
timent for problems with high priority. Similarly, 27% of respondents
reported they interpret negative sentiment as an indication of higher
priority.

140 CHAPTER 5. SATD AND POLARITY

0%10%20%30%40%50%60%70% 10% 20% 30%
Percentage of Responses

Writing negative SATD
to indicate priority is

acceptable.
38% 16% 33% 13%

Strongly Disagree
Disagree
Neutral
Agree
Strongly agree

Figure 5.4: 13% of respondents believe that writing negative comments
to indicate higher priority is an acceptable practice (light blue), while 16%
disagree with this (pink) and 38% strongly disagree (red).

5.3.4 RQ5.3: Do developers believe that the expression of
negative sentiment in SATD is an acceptable practice?

Fig. 5.4 shows that using negative comments in the source code to indicate
the priority of an issue is a matter of controversy. While 13% believe this
to be an acceptable practice, 16% disagree, and 38% strongly disagree.
However, it is interesting to notice that the percentage of the respondents
who believe that the usage of negative comments in the source code to
indicate priority is an acceptable practice is less than half of the percentage
of the respondents exhibiting this behavior (as shown in Fig. 5.3).
Fig. 5.5 provides further insights into the developers’ annotation practices
as well as in the role of negativity. By comparing the left and the central bar
charts visually, we can observe that a substantial share of developers write
negative source-code comments recording SATD. In particular, 9 respon-
dents indicate that they write negative comments often or very often. This
might not appear much but at the same time, only 20 respondents report
that they write any SATD comments often or very often, i.e., 45% of the
respondents that (very) often write SATD comments also write negative
SATD comments. This observation concurs with the fact that while, in
general, 13% of the respondents believe that it would be appropriate to use
negativity to express a higher priority of an issue (Fig. 5.4), this percentage
increases to 45% if we only consider respondents that (very) often write
SATD comments.
The comparison of the bar chart in the middle of Fig. 5.5 with the one on
the right suggests that there are fewer developers that never write negative
SATD than those that never encounter negative SATD. However, besides
such a difference, these two distributions are very similar.

5.3. STUDY RESULTS 141

Ne
ve
r

Ra
re
ly
(Le

ss
 th

an
 on

ce
 a
mo

nt
h)

So
me

tim
es
 (M

on
th
ly)

Of
te
n (
We

ek
ly)

Ve
ry
 of
te
n (
Da
ily
)

5

10

15

20

Nu
m
be
r o

f r
es
po
ns
es

When writing source-code how often do
you write source-code comments indicating
delayed or intended work activities such
as TODO, FIXME, hack, workaround, etc.?

Ne
ve
r

Ra
re
ly
(Le

ss
 th

an
 on

ce
 a
mo

nt
h)

So
me

tim
es
 (M

on
th
ly)

Of
te
n (
We

ek
ly)

Ve
ry
 of
te
n (
Da
ily
)

When authoring comments that describe
a problem, how often do you write negative
source-code comments indicating delayed
or intended work activities such as TODO,

FIXME, hack, workaround, etc.?

Ne
ve
r

Ra
re
ly
(Le

ss
 th

an
 on

ce
 a
mo

nt
h)

So
me

tim
es
 (M

on
th
ly)

Of
te
n (
We

ek
ly)

Ve
ry
 of
te
n (
Da
ily
)

How often do you come across negative
source-code comments indicating delayed
or intended work activities such as TODO,

FIXME, hack, workaround, etc.?

Figure 5.5: Responses to closed questions of the survey

What is highlighted visually is indeed confirmed by the statistical compari-
son of the distributions. The only statistically significant differences are (i)
between developers writing SATD comments and expressing negativity in
such comments (p ≃ 0.014), and (ii) between developers writing SATD com-
ments and encountering negativity in such comments (p ≃ 0.021).

RQ5.3

While in general most developers believe that expressing negativity in
SATD comments is not acceptable, the opinion shifts towards accep-
tance among respondents that frequently write SATD comments.

142 CHAPTER 5. SATD AND POLARITY

5.3.5 RQ5.4: How does the occurrence of negative sentiment
vary across different kinds of SATD annotations?

Table 5.6: Distribution of sentiment labels over the 994 comments from the
da S. Maldonado et al. [67] dataset.

Poor implementation choices 125 29% 294 7 426

Partially implemented 29 13% 197 2 228

Functional issues 66 49% 67 2 135

Wait 41 46% 45 3 89

Documentation issues 18 33% 36 0 54

Testing issues 12 33% 24 0 36

Misalignment 6 29% 15 0 21

SATD comments outdated 1 33% 2 0 3

Deployment issues 1 50% 1 0 2

Total 299 (30%) 681 14 994

Category Neg Neg % Non-neg Mixed Total

Following the methodology described in Section 5.2.3, the polarity of 998
SATD comments (= 1038 − 40, where 40 comments have been excluded
as false positives, i.e., SATD comments that are not real SATD) has been
manually classified. Four comments have been further excluded as the
authors could not reach an agreement regarding their sentiment polarity.
Hence, for this question, we looked at 994 SATD comments (hereinafter,
SATD dataset) out of 1038 in the original dataset. We report the resulting
distribution of sentiment labels in Table 5.6.

Table 5.7: Distribution of sentiment labels over the comments drafted by
the respondents for the five vignettes presented in the survey.

Poor implementation
choices

2 7% 27 0 17 46

Category Neg Neg % Non-neg Mixed No-comment Total

Continued on next page

5.3. STUDY RESULTS 143

Table 5.7: Distribution of sentiment labels over the comments drafted by
the respondents for the five vignettes presented in the survey.
(continued)

Partially implemented 4 11% 32 0 10 46

Functional issues 7 23% 24 0 15 46

Wait 1 4% 22 0 23 46

Documentation issues
– A

2 10% 18 0 16 36

Documentation issues
– B

0 0% 3 0 7 10

Total 16 11% 126 – # Comments: 142

Category Neg Neg % Non-neg Mixed No-comment Total

We apply the same protocol and guidelines for labeling the sentiment of the
comments drafted by our survey respondents (hereinafter, survey dataset).
We remind the reader that these comments were formulated by the sur-
vey participants in response to the five vignettes representing five different
development scenarios where there is a need to admit the presence of a
TD in the code. The results of this second labeling study are reported in
Table 5.7.

In the following, we detail the results of the labeling studies performed on
both SATD and survey datasets. Overall, we observe that 299 of the 994
comments (30%) in the SATD dataset convey negative sentiment polarity
and only 14 items are labeled as mixed. We observe a lower percentage
(11%) of negative sentiment in the survey dataset. As we will discuss
below, while we report and discuss the results of both studies together, a
direct comparison should not be done, given the wider diversity of SATDs in
the first data set, and given the different settings of the two studies.

Based on sentiment distribution observed in the two datasets, we found that
developers mostly complain about “Functional issues”. Specifically, 49% of
comments (66 out of 135) in the SATD dataset convey negative sentiment,
e.g., “TODO: include the rowids!!!!” in hibernate or “something is very
wrong here” in columba. “Functional issues” is also the most negative
category emerging from the comments in the survey dataset, with 23% of
proposed comments conveying negative sentiment. Specifically, as reported

144 CHAPTER 5. SATD AND POLARITY

in Table 5.7, 7 out of 31 SATD comments drafted for the functional issues’
vignette convey a negative sentiment aimed at stressing the presence of an
unexpected behavior within the code fragment by using tags such as FIXME
or by emphasizing the urgency in addressing a problem (e.g., “Please in-
vestigate ASAP, autocompletion appears to be ignoring recently used email
addresses.”)

Similarly, developers appear annoyed by required changes being on hold:
in the SATD dataset, 46% of comments (41 out of 89) belonging to the
“Wait” category contains negative sentiment, such as “turn of focus stealing
(workaround should be removed in the future!)” in columba. Similarly
to self-directed anger studied by Gachechiladze et al. [94], we also found
cases in which developers blame themselves, e.g., “this is retarded. excuse
me while I drool and make stupid noises” in jedit.

When looking at the sentiment for on-hold TD vignettes, we found that
only 1 out 23 SATD comments contain a negative sentiment. This may
depend on both the specific (sub) type of SATD in the vignette which is
related to the lack of a proper API (for which often there is little to do),
whereas the examples above refer to circumstances internal to the project,
which may cause more negativity.

In the SATD dataset, negative sentiment is also found in 33% of “Documen-
tation issues” (e.g., “TODO: are we intentionally eating all events? - tfm
20060203 document!” in argouml) and “Testing issues” (e.g., “TODO
enable some proper tests!!” in jmeter). This makes these two categories
as the third most negative ones in the SATD dataset, similarly to what was
observed in the survey dataset, albeit with different percentages (10% of the
survey respondents conveyed negative sentiment in presence of documenta-
tion issues for subgroup A, while the three comments drafted for subgroup
B were all non-negative).

As for “Poor implementation choices”, which is the most frequently observed
macro-category in our taxonomy with 426 comments, we observe 29% of
negative sentiment comments in the SATD dataset (e.g., “TODO: terrible
implementation!” in hibernate). As for the survey study, only 7% of our
survey respondents appear annoyed by issues due to poor implementation
choices. However, despite the different proportions, “Poor implementation
choices” emerges as the fourth category in terms of percentage of negative

5.3. STUDY RESULTS 145

sentiment in both datasets3.

Concerning the “Partially implemented” category, in the SATD dataset,
when reporting a partial or non-implemented functionality developers are
unlikely to be negative (29 out of 228, corresponding to 13%), e.g., “cal-
culate the adjusted data area taking into account the 3D effect... this
assumes that there is a 3D renderer, all this 3D effect is a bit of an ugly
hack. . . ” in jfreechart. For the survey dataset we observe that “Par-
tially implemented” is the category with the second-highest proportion of
negative comments (Table 5.7). In particular, for TDs due to partially/not
yet implemented functionality, developers tend to not use a negative sen-
timent to report them (32 out of 36 comments) while simply stating what
is missing in the current implementation (e.g., “Function not completed,
Need to raise dialog after invalid input”). In both the survey dataset (Table
5.7) and the Maldonado et al. dataset (Table 5.6) developers tend to report
what is missed. However, in the survey dataset developers tend to use more
negative polarity. We conjecture that this may depend on several factors,
ranging from the specific types of TD (again, more diverse in the dataset of
da S. Maldonado et al. [64] than in the vignettes), by the personal attitude
of the SATD authors vs. survey respondents, and, last but not least, to the
different context (realistic setting vs. artificial one).

Table 5.8: Statistical comparison of negative polarity for the comments in
the dataset of Maldonado et al. (OR> 1 means that the propor-
tion is significantly greater for the left-side category. Non-signif-
icant pairs are omitted in the table.)

Functional issues Partially implemented <0.01 6.52
Functional issues Documentation issues 0.04 2.43
Functional issues Poor implementation choices <0.01 2.30
Poor implementation choices Partially implemented <0.01 2.85
Wait Partially implemented <0.01 5.82

Category 1 Category 2 p-value OR

Continued on next page

3As for the remaining categories observed in the SATD dataset, they contain a very
small number of comments so the results might bring anecdotal evidence and need to be
further verified with a larger study.

146 CHAPTER 5. SATD AND POLARITY

Table 5.8: Statistical comparison of negative polarity for the comments in
the dataset of Maldonado et al. (OR> 1 means that the propor-
tion is significantly greater for the left-side category. Non-signif-
icant pairs are omitted in the table.) (continued)

Wait Poor implementation choices 0.02 2.05
Testing issues Partially implemented 0.02 3.41
Documentation issues Partially implemented 0.03 2.67

Category 1 Category 2 p-value OR

As a follow-up study, we performed a pairwise comparison of negative po-
larity in the macro-categories in the SATD dataset of da S. Maldonado
et al. [64]. The results, reported in Table 5.8, confirm that negative sen-
timent mostly occurs in presence of bugs or the need to wait to see an
issue resolved. Specifically, comments in “Functional issues” and “Wait”
appear significantly more negative than comments labeled as “Partially im-
plemented” (Odds Ratio equal to 6.25 and 5.82, respectively) and more
than twice as negative than “Poor implementation choice.” Moreover, sta-
tistical analysis confirms that comments reporting partial implementation
are the least negative, compared to the other categories.

RQ5.4

SATD about functional issues conveys more negative sentiment.
Also, being “on-hold” for various reasons that do not depend on
themselves, make developers communicating negative sentiment.
Survey respondents were more neutral when reporting partial im-
plementations due to the lack of a proper API, misalignment, or
documentation/testing issues.

5.3.6 RQ5.5: To what extent do SATD annotations belonging
to different categories contain additional details?

We perform a conceptual replication of the work on task annotations by
Storey et al. [255]. Following the methodology described in Section 5.2.4,
we leverage the SATD dataset together with the comments left by our re-
spondents to the five vignettes included in the survey. We present the results

5.3. STUDY RESULTS 147

Table 5.9: Distribution of dimensions used by developers to annotate tech-
nical debt over the 1038 comments from the Maldonado et al. dataset.

Category Component Name Bug id URL Date
Functional issues 47 (35%) 12 (9%) 11 (8%) 1 (1%) 9 (7%)
Poor implementation choices 152 (35%) 48 (11%) 5 (1%) 0 16 (4%)
Wait 21 (24%) 4 (5%) 9 (10%) 2 (2%) 1 (1%)
Deployment issues 0 0 0 0 0
SATD comments outdated 1 (33%) 0 1 (33%) 0 0
Partially implemented 50 (22%) 22 (10%) 0 0 1 (< 1%)
Testing issues 7 (19%) 3 (8%) 0 0 0
Documentation issues 19 (35%) 11 (20%) 0 0 1 (2%)
Misalignment 7 (33%) 4 (19%) 0 0 0
Tot. (unique) 304 (30%) 104 (10%) 26 (3%) 3 (0.3%) 28 (3%)

Table 5.10: Distribution of dimensions used by developers to annotate tech-
nical debt over Macro-categories for comments drafted in the survey.

Category Name Bug id Date Total comments drafted
Functional issues 2 (6.25%) 4 (12.50%) 0 (0.00%) 31
Poor implementation choices 1 (3.22%) 5 (16.12%) 0 (0.00%) 29
Wait 0 (0.00%) 3 (12.00%) 1 (4.00%) 23
Partially implemented 0 (0.00%) 4 (11.11%) 0 (0.00%) 36
Documentation issues – A 0 (0.00%) 3 (15.00%) 0 (0.00%) 20
Documentation issues – B 0 (0.00%) 0 (0.00%) 0 (0.00%) 3

of this analysis in Table 5.9 and Table 5.10. While frequently mentioned by
the developers surveyed by Storey et al., additional details rarely appear in
our study.

Specifically, 64% of developers from Storey et al. study declared to add
references to classes/methods/plug-ins/modules. However, in our study we
found the latter happening in 304 SATD comments (30%) which, although
not as high as 60%, is a conspicuous fraction of the total. As for the
authors’ names, instead, only 10% of the SATD comments in our sample
contain them, even if around 50% of developers explicitly added their names
in the annotations. This may be confirmed considering that only 12 out of
135 SATD comments in the “Functional issues” category clearly report the
name. However, about half of the SATD comments referring to a name
fall into the “Poor implementation choices” category. One possibility is
that during code reviewing processes, reviewers may identify the presence
of wrong decisions and highlight them as source code comments. By looking
at the comments left from our survey respondents, only 3 out of 148 com-

148 CHAPTER 5. SATD AND POLARITY

ments (see Table 5.10) contain a reference to a developer name. The low
percentage in our survey results might be justified because the respondents
are invited to draft a comment related to a hypothetical situation.

Moving our attention to the inclusion of bug identifiers, 42% of the SATD
comments in the dataset of da S. Maldonado et al. [64] containing them
belong to the “Functional issues” category, however, a non-negligible per-
centage (33%) concerns the “Wait” category. This is not surprising since
developers may introduce a workaround due to a bug that needs to be
fixed in the same project or in a third-party library being used. As regards
the former, consider the SATD comment: “// TODO : YUCK!!! fix after
HHH-1907 is complete” in hibernate, while for the latter in argouml
we found a comment stating: “[...] NOTE: This is temporary and will go
away [...] http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=
4714232” in which the bug is in java.awt library. The same does not apply
to the SATD comments from our survey respondents, where for each cate-
gory we have less than 17% of comments clearly referring to bug identifiers.
However, while there are no comments belonging to Documentation and
partially implemented functionality issues in the original Maldonado et al.
dataset, we found 4 out of 36 and 3 out of 20 for subgroup A and 0 out
of 3 for subgroup B comments referring to a bug-id belonging to the same
categories in our survey (e.g., “TODO - this is a bug, described in PRG-123,
dialog window is not implemented (so what is raised??)”).

Finally, looking both at dates and URLs, percentages from the dataset of
da S. Maldonado et al. [64] are very low compared to those reported in the
survey by Storey et al. [255] (3% and 0.3% vs 19%, and 30%). A possible
interpretation is that unlikely as stated in the survey, developers assume
redundant introducing signature and date (as such information is available in
the versioning system anyway). Nevertheless, having them explicitly stated
in the source code makes the accountability and tracing more evident. The
same occurs also in the drafted comments from our survey where only 1
comment explicitly refer to a date (i.e., “// Blocked on external API by
XYZ corp, expecting it to be online by 32 Juvember 2038.”) However, as
already said for the developer’s name, also in this case, respondents are
asked to write a comment for a hypothetical situation probably impacting
the lack of the additions of further details.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4714232
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4714232

5.4. DISCUSSION 149

RQ5.5

The addition of details such as bug identifiers and names is not so
frequent when reporting TD in source code comments. However,
developers tend to mention classes and methods more frequently,
possibly to improve traceability and support themselves/others in
addressing the SATD.

5.4 Discussion

Sentiment in SATD: a proxy for priority? Recently, software engineering
researchers hypothesized that negatively loaded communication might be
a proxy for identifying priority of a problem that need to be addressed [94,
270, 150]. Similarly, in marketing research, more attention is devoted to
negative rather than positive customers’ reviews [281, 290], in line with the
assumption that negative feedback is usually more informative as it provides
an indication of problems that need to be solved and that might influence
consumers’ decisions [47, 244]. Our study shows that, while only 13% of
the respondents believe that it is acceptable to use negative comments to
express priority, more than twice agree to do so, and a similar share of
respondents will interpret negative SATD comments as reflecting higher
priority. Hence while the perception of negativity as a proxy for priority
is not necessarily shared by all developers, it is still sufficiently common
to speculate this relation as hypothesized in previous work exists [94, 270,
150].

Both in the SATD source comments (Table 5.6) and in the survey (Ta-
ble 5.7), negative sentiment is most frequently associated with reporting
functional issues. In other words, developers perceive the presence of bugs
as more annoying than other problems, such as waiting, partial implemen-
tations, testing, and documentation issues. While we acknowledge the need
for further investigation of sentiment in SATD, e.g., on a larger dataset, we
believe these findings already have actionable implications. Specifically, the
amount of negativity observed in the “Functional issues” category suggests
that developers should prioritize bug fixing over other issues, such as the
implementation of missing functionality. This is also in line with previous
findings by Mäntylä et al. [168] reporting more negativity for bugs and more
positive sentiment for feature implementation requests.

150 CHAPTER 5. SATD AND POLARITY

Waiting is the category commonly associated with the negative sentiment
in the SATD comments but much rarely so in the survey. The high nega-
tive sentiment associated with being “on-hold” might be interpreted as an
indication of a blocking issue urgently requiring attention. This is in line
with previous findings by Ortu et al. [197] reporting a positive correlation
between negative sentiment and issue fixing time. Along the same line,
Mäntylä et al. [168] reported higher emotional activation as the issue reso-
lution time increases, as well as higher arousal in high priority bug reports,
thus indicating a presence of emotions with high activation and negative
polarity, such as stress. As such, the presence of negative sentiment can
be used as a proxy for automatic identification and prioritization of critical,
blocking issues, which might require the interventions of peers. Secondly,
the information in the classification can be used to assist in the fine-grained
problem of SATD prioritization.

When looking at the SATD polarity, one important element to consider
is whether the comment belongs to source code written by the developer
who introduced the comment, or whether, instead, the source code has
been written to somebody else. In the first case, this means that one is
“self-blaming” (e.g., “For some reason, I am not able to get the sheet to
size correctly.”), warning others that the artifact is not in an ideal state
yet, and encouraging others to improve it (e.g., “I have no idea how to get
it, someone must fix it” or “If someone knows a better way // please tell
me”). This behavior might be related to self-directed anger [94] and may
depend a lot on the context in which one works. Zampetti et al. [291] have
indicated that developers are more reluctant to self-admit technical debt in
an industrial context than in an open-source one.

In the second case, one may be criticizing source code written by somebody
else. Previous work (conducted on a different dataset than ours) has shown
that this occurs in a relative minority of cases, with a percentage varying
between 0 and 16% [91]. Therefore, it is very likely that the majority of
SATD are related to their own code, and the negative sentiment mainly
expresses un-satisfaction for what was done.

Support for SATD reporting. While, as mentioned above, functional TD
is the macro-category triggering more negative comments, survey respon-
dents clearly indicated that issue trackers should be used instead of source
code comments to report high-priority SATD. This is because, differently
from source code comments, issue trackers allow for better management of

5.4. DISCUSSION 151

the problem (e.g., triaging, priority assignment, discussion, fixing or possibly
reopening). Indeed, as a previous study by Xavier et al. [283] has shown,
SATD is also reported beyond source code, e.g., in issue trackers. However,
(and this was confirmed by Xavier et al. [283]), such SATD is infrequently
traceable to the exact source-code location that exhibits the SATD. This
problem of traceability raises the need for tooling that supports the report-
ing of SATD, i.e., not only the use of issue trackers but also the need for
establishing traces between issues and the affected code fragments (this is
not needed for SATD comments present in the source-code as they appear
close to the affected code). Such traces between code and issues are for
example present when developers use code reviewing tools or pull request
discussions, as comments made during a review can point directly to the
code.
Supporting developers in effective SATD comment writing: the role
of sentiment. Based on the results of the sentiment analysis study, we
believe that providing immediate feedback on the negative tone during
comment-writing could support developers in more effective collaboration.
Specifically, an early detection of harsh or hostile sentiment could not only
enable discovering code of conduct violations [267] but also support devel-
opers towards effective communication. A SATD sentiment analyzer could
prompt developers to highlight the “toxicity” conveyed by their comments,
and possibly suggest re-tuning their writing, to avoid irritating their peers.
Also, it can recommend using alternative ways of expressing that SATD
requires higher priority as suggested in Table 5.5.
Our vision is corroborated by the survey results: Fig. 5.4 indicates that
nearly half of the survey respondents do not see writing negative comments
as an acceptable practice. Furthermore, it is supported by previous find-
ings on collaborative software development and technical knowledge-sharing.
Motivated by developers reporting stress due to aggressive communicative
behavior in open source communities, Raman et al. [216] investigated the
possibility to automatically detect and mitigate such unhealthy interactions.
Steinmacher et al. [250], instead, showed the impact of social barriers in
attracting new contributors to open-source projects. Further studies inves-
tigated the impact of sentiment in collective knowledge-building: Calefato
et al. [45] found a higher probability of fulfilling information-seeking goals
on Stack Overflow when questions are formulated using a neutral style,
while Choi et al. [57] found that positive, welcoming tone and constructive
criticism is beneficial for online collaboration in Wikipedia.

152 CHAPTER 5. SATD AND POLARITY

The evaluation of the SE-specific publicly available sentiment analysis tools
we performed (see Section 5.2) indicated that a fine-tuning is needed be-
fore existing tools can be reliably used. Our gold standard for sentiment
annotation in SATD represents the first step towards this goal. Further-
more, being able to reliably identify and distinguish hostile comments from
non-toxic negative sentiment, as in reporting concerns due to a bug, is a
crucial aspect to take into account in performing such fine-tuning to avoid
marking non-toxic comments for moderation. By releasing our gold stan-
dard and guidelines for annotation, we hope to stimulate further research
on negativity detection in SATD.

References perceived as important in comments [255], but not widely
used in SATD comments. Survey respondents state that including bug
IDs and name of the responsible person can be used to indicate that the
SATD should have a higher priority (Table 5.5). Based on the results
of our study we envision the emergence of tools supporting and guiding
the authors towards adding proper references and information while adding
SATD.

While previous work by Storey et al. [255] stressed the perceived impor-
tance of various forms of references in task annotations, they occur much
less frequently than one would expect. For example, while most developers
(64%) participating in the study by Storey et al. declared they add refer-
ences to classes, methods, plug-ins, and modules, such references appear
only in 30% of our dataset of SATD comments; similarly, adding bug ids
has been reported by 44% of the developers surveyed by Storey et al. only
3% of the SATD comments in our dataset contained bug ids. In our survey
we have asked the respondents to provide examples of SATD comments
that they would write given a situation (see Table 5.10): without further
prompting 11.11–16.12% of the survey respondents have included bug ids
in their comments across all categories of SATD, names of developers or
date (as discussed by Storey et al. [255]) are much less commonly men-
tioned. Hence, for all categories of our taxonomy to properly document
SATD, developers should open bug reports in the issue tracker and refer-
ence them in the comment, as well as refer to other classes or methods to
be updated.

Tool support could be developed to automatically detect introduction/change
of SATD comments, and generate a date and signature for it, since half of
developers in the study by Storey et al. include both their names and dates

5.5. RELATED WORK 153

during task annotations. Similarly, automated support could be provided to
reference/open an issue every time a Functional SATD is detected. Also,
when “on-hold” SATD comment is automatically detected [163], developers
may be guided to add a reference to a proper source. By helping to achieve
properly structured SATD comments (depending on their type) with suit-
able references, not only those comments may become more traceable and
understandable, but the available information will also help to better drive
their manual (or semi-automated) resolution.

5.5 Related Work
In the following, we discuss relevant literature related to (i) studies about
TD and SATD, and (ii) sentiment analysis in software development.

5.5.1 Technical Debt and Self-Admitted Technical Debt
In the past years, the research community empirically studied TD and SATD.
Seaman and Guo [232], Kruchten et al. [132], Brown et al. [41], and Alves
et al. [20] made different considerations about “technical debt” highlight-
ing that TDs are a communication media among developers and managers
to discuss and address development issues. Furthermore, Lim et al. [147]
highlighted that TD introduction is mostly intentional, and Ernst et al.
[83] pointed out how TD awareness is a cornerstone for TD management.
Zazworka et al. [296], instead, highlighted the need for proper handling
and identification of TD to reduce their negative impact on software qual-
ity.
By looking at source code comments in open source projects Potdar and
Shihab [215] found that developers tend to “self-admit” TD. In a follow-
up study, da S. Maldonado and Shihab [66] developed an approach that
by using 62 patterns identifies whether or not a comment is an SATD
along with such categories as defect, design, documentation, requirement,
and test debts. Bavota and Russo [32], instead, have refined the above
classification providing a taxonomy featuring 6 higher-level TD categories
properly specialized into 11 sub-categories. Our work differs from that by
Potdar and Shihab [215] and Bavota and Russo [32] in that we focus on
the content reported in the SATD without considering the development
life-cycle in which the SATD may be mapped.
Nevertheless, it is possible to identify a possible correspondence between

154 CHAPTER 5. SATD AND POLARITY

Table 5.11: Mapping between Bavota and Russo [32] SATD categories and
our taxonomy. In some cases we could only create a mapping with the
2nd-level category of Bavota and Russo [32], as in the case of “Documen-
tation Issues/Inconsistent Documentation” mapped on their “Inconsistent
comments”, and “Functional Issues”, mapped on their “Functional”.

Bavota and Russo [32] Our Taxonomy
1st Level 2nd Level 3rd Level Category Sub-Category

Code
Low Internal Quality

Poor Impl. Choices

Poor impl. solutions
Poor API usage
Code review needed
Maintainability issues
Performance issues
Usability
Won’t improve the code

Partially/Not Impl. Func.

Workaround Wait Temporary patch

Design
Code Smells Poor Impl. Choices Maint. Issues

Poor Impl. Solutions

Design Patterns Poor Impl. Choices Maintainability Issues
Poor Impl. Sol.

Doc.
Incons. Comm.

Doc. Issues Inconsistent Doc.

Addressed TD SATD outdated

Won’t fix
Func. Issues Fix to postpone
Poor Impl. Choices Won’t improve the code
Doc. Issues Won’t modify doc.

Licensing

Defect
Defects

Known defects to fix Func. Issues Bug to fix

Partially fixed defects Func. Issues Temporary Patch
Partially/Not Impl. Func. Work under specific cond.

Low Ext. Qual. Poor Impl. Choices Usability

Test Testing Issues
Improve tests
Test case bugs
Disalign. prod/test code

Req.
Functional

Func. Issues

Improv. to feat. needed Partially/Not Impl. Func.

Work under specific cond.
Func. issue elsewhere
Pre-cond. missing
Post-cond. unchecked
Incompl. except. handling

New feat. to be impl. Partially/Not Impl. Func.

Work under specific cond.
Func. issue elsewhere
Pre-cond. missing
Post-cond. unchecked
Incompl. except. handling

Non Functional Performances Poor Impl. Choices Performance issues

5.5. RELATED WORK 155

the SATD categories identified by Bavota and Russo and those we have
identified. Table 5.11 reports the mapping between the third-level SATD
classification by Bavota and Russo [32] and our taxonomy. By looking at the
mapping, it is possible to state that, except for “Licensing”, which was not
encountered in our study, our taxonomy covers all the categories by Bavota
and Russo [32]. Note that in some cases we could only create a mapping
with their 2nd-level category, as in the case of “Documentation Issues/In-
consistent Documentation” mapped on their “Inconsistent comments”, and
“Functional Issues”, mapped on their “Functional”.

Being based on the technical content of commit messages rather than on the
development process, our taxonomy provides a more detailed classification
for some of the general categories in Bavota and Russo, e.g., “Low Internal
Quality” is specialized in our taxonomy among different type of issues in the
“Poor Implementation Choices” category. Finally, our taxonomy enriches
the one already presented in previous literature since that 14 out of our 33
categories and/or sub-categories cannot be mapped on the taxonomy by
Bavota and Russo [32], unless doing a generic mapping on the first level of
their taxonomy.

Concerning the SATD classification, Maipradit et al. [163], introduced the
concept of “on-hold” SATD i.e., comments expressing a condition indi-
cating that a developer is waiting for an event internal or external to the
project under development. As a follow-up study, Maipradit et al. [162],
built a classifier aimed at detecting on-hold SATD with an average AUC
of 0.97. Moreover, they studied the on-hold SATD evolution by looking
into the life-span of removed issue-referring comments finding that 13% of
on-hold SATD are removed from the code more than one year after their
resolution.

Fucci et al. [91], conjectured that “self-admission” may not necessarily mean
that the comment has been introduced by whoever has written or changed
the source code. Their results highlight that SATD comments are mainly
introduced by developers having a high level of ownership on the SATD-
affected source code.

While most of the aforementioned work focused the attention on SATD
in source code comments or commit messages, Xavier et al. [283] studied
SATD being reported in the issue trackers of five projects. Their findings
indicate that SATD issues take longer to be fixed than other issues and that
only 29% of those issues can be traced onto source code comments. As

156 CHAPTER 5. SATD AND POLARITY

confirmed by the results of our survey, where respondents have indicated
that SATD should be reported in issue trackers and not in the source code,
we share with Xavier et al. [283] the need to develop tools for better SATD
management.

As regards the impact of SATD, Wehaibi et al. [277] found that SATD
leads to complex changes in the future, while Russo et al. [226] found that
55% of SATD in Chromium contains potentially vulnerable code. Yasmin
et al. [287] studied duplicate SATD, and found that between 41%–65% of
SATD in five Apache projects is duplicated, additionally, Kamei et al. [126]
highlighted that ≃ 42% of TD incurs positive interest. From a different
perspective, Zampetti et al. [292] developed an approach for recommending
when a design TD has to be admitted.

Differently from previous work, we focused our attention on the SATD
content, i.e., what developers usually annotate about TD, as well as how
they communicate the presence of this temporary solution, i.e., sentiment
and external references.

Zampetti et al. [291] conducted a survey with open-source and industry de-
velopers to investigate their TD admission practices. Their study found that
TD admission is very similar between industry and open-source, although
their behavior of industrial developers upon commenting source code is of-
ten constrained by organizational guidelines. Also, industrial developers are
more afraid in admitting TD, because they see this as a way to reveal their
weaknesses, and are afraid this may have consequence on their career.

The research community has also focused on SATD removal. da S. Mal-
donado et al. [64] found that there is a high percentage of SATD being
removed even if their survivability varies by project. Zampetti et al. [293],
instead, studied the relationship between comment removals and changes
applied to the affected source code. They found how SATD can be either
removed through focused changes (e.g., to conditional statements), but also
by rewriting/replacing substantial portions of source code. Liu et al. [157]
also empirically analyzed the introduction and removal of different types of
TD, in this case with a specific focus to machine learning projects. They
found that the most frequently introduced TD during the development pro-
cess is design debt, whereas in terms of removal developers tend to remove
requirement debt the most, and design debt fastest. To aid developers in
SATD removal, Zampetti et al. [295] proposed SARDELE, a multi-level clas-
sifier able to recommend six SATD removal strategies using a deep learning

5.5. RELATED WORK 157

approach. We believe that a more focused analysis of the SATD content
like the one done in our work could help to refine such approaches, allowing
for more actionable suggestions.

The textual content of SATD comments is analyzed by Rantala et al. [217],
who developed a detector for Keyword-Labeled SATD, i.e., SATD high-
lighted by specific keywords such as TODO or FIXME. Their analysis shows,
among others, the usages of keywords expressing not only the need for code
changes, but also a situation of uncertainty. Our analysis complements the
findings of Rantala et al. [217] as it turns out that, in some circumstances,
SATD also contains expressions of negativity.

TODO comments can be sometimes obsolete, but they may or may not
be removed by developers. Therefore Gao et al. [96] proposed an ap-
proach, named TDCleaner, to identify and remove obsolete TODO com-
ments. Their approach is based on a neural encoder that learns from SATD
comments, code changes, and commit messages. In principle, obsolete
SATD could affect all categories we have considered (in RQ1), although our
manual analysis did not identify any explicit trace of such comments.

By mining the file history of these frameworks, we find that design debt is
introduced the most along the development process. As for the removal
of technical debt, we find that requirement debt is removed the most, and
design debt is removed the fastest. Most of test debt, design debt, and
requirement debt is removed by the developers who introduced them.

Zampetti et al. [291] surveyed developers in the open-source and industry,
investigating whether they admit SATD differently. They found that, in
general, their behavior is similar. At the same time, industrial developers
are more driven by their organizational guidelines, and are also (implicitly
or explicitly) discouraged to admit SATD and/or to push code that is not
ready. The finding of our survey further confirms what conjectured by
Zampetti et al. [291], because developers have pointed out that code with
SATD should not be merged.

5.5.2 Sentiment Analysis in Software Development

Recently, a trend has emerged and consolidated to leverage sentiment analy-
sis in empirical software engineering research [192, 149]. Murgia et al. [183]
presented an early exploratory study of emotions in software artifacts. By
manually labeling issues from the Apache Software Foundation, they found

158 CHAPTER 5. SATD AND POLARITY

that developers feel and report a variety of emotions, including gratitude,
joy, and sadness. Ortu et al. [197], instead, investigated the correlation
between sentiment in issues and their fixing time showing how issues with
negative polarity, e.g., sadness, have a longer fixing time. On the same line,
Mäntylä et al. [168] performed a correlation study between emotions and
bug priority to derive symptoms of productivity loss and burnout. By looking
at issue tracking comments they mined emotions and used them to com-
pute Valence (i.e., sentiment polarity), Arousal (i.e., sentiment intensity),
and Dominance (the sensation of being in control of a situation). Their
findings highlight that bug reports are associated with a more negative Va-
lence, and issue priority positively correlates with the emotional activation,
with higher priority correlating with higher arousal. While not represent-
ing any causal relationship between emotions and the investigated factors,
both correlation studies suggest how sentiment can be used as a proxy for
problems or priority in the development process, for monitoring the mood
of software development teams, as well as identifying factors correlated to
positive emotion, towards fostering effective collaboration and developers’
productivity. Differently from the previous correlation studies, our study
investigates how developers communicate the presence of technical debt
by manually labeling the sentiment inside SATD comments and survey re-
sponses imitating SATD comments. Furthermore, while previous studies
conjectured the link between sentiment and priority in the software devel-
opment process, we have evaluated this conjecture by surveying software
developers.
Researchers in requirements engineering use sentiment analysis as a source
of information for requirements classification towards supporting software
maintenance and evolution. Panichella et al. [204] applied sentiment anal-
ysis for classifying user reviews in Google Play and Apple Store, Maalej
et al. [160] leveraged several text-based features, including sentiment, for
automatically classifying app reviews into four categories, namely bug re-
ports, feature requests, user experiences, and text ratings, while Portugal
and do Prado Leite [214] use sentiment analysis to acquire a deeper under-
standing of usability requirements.
While early studies of sentiment in software development made use of
general-purpose sentiment analysis tools this approach is shown to be un-
reliable [123]. To address this challenge multiple sentiment analysis tools
have been specially designed for the software development domain [120, 43,
17, 19, 55, 76]. We have evaluated the applicability of such tools to SATD

5.6. THREATS TO VALIDITY 159

comments but as explained in Section 5.2.3 the tools missed some negative
comments due to the presence of lexicon which is specific to SATD com-
ments. Hence, the sentiment analysis in this chapter has been performed
manually.

As far as negative emotions are concerned, Gachechiladze et al. [94] looked
at the anger and its direction in collaborative software development, envi-
sioning the tools detecting the anger target in developers’ communication,
by distinguishing between anger towards self, others, and object. In their
vision, detecting anger towards self could be useful to support stuck devel-
opers, while anger towards others should be detected for community mod-
eration purposes. Finally, detecting anger towards objects can enable the
recommendation of alternative tools or task prioritization. As a preliminary
step towards this goal, they created a manually annotated dataset of 723
sentences from the Apache issue reports and used it to train a supervised
classifier for anger detection. Similarly to this study, we focus on negative
emotion confirming that their detection and modeling can serve as a proxy
for problems occurring in the software development process.

A complementary line of research considers biometric measurements to as-
sess software developers’ emotional states rather than texts authored by
them [182, 103, 102].

5.6 Threats to Validity
Threats to construct validity concern the relationship between theory and
observation. One threat is how the comments are classified in RQ5.1. Our
knowledge of the analyzed systems may not be as deep as those of the origi-
nal developers. To mitigate this threat, we analyzed not only the comments
but also the corresponding source code when this was needed. A relevant
threat for RQ5.4 is related to how “sentiment” is perceived by annotators
but may not match the actual sentiment of developers. For what possible,
the subjectiveness in RQ5.1 and RQ5.4 has been mitigated by establishing
clear coding guidelines, and by doing initial joint sessions. Furthermore,
we resolved all disagreements through a discussion during plenary meet-
ings involving all the annotators. For sentiment labeling, we also measured
the extent to which we could have reached an agreement by chance using
inter-rater agreement metrics.

Concerning the first part of the survey which we used to answer RQ5.2 and

160 CHAPTER 5. SATD AND POLARITY

RQ5.3, we ask developers to provide their perception about SATD practices
and the extent to which negative polarity should be used when reporting
SATD. We are aware that this kind of “self-assessment” conducted through
a survey not only can be affected by the self-selection of the participants
(e.g., less negative ones were those who decided to respond), but, also, that
what answered to a questionnaire may be different from what one actually
does in the practice.

In the survey study, we used vignettes [223, 174, 200] to gather, from re-
spondents, their reaction to certain development scenarios or to certain
situations occurring in a project. Although the vignettes are inspired by the
SATD source comments we have analyzed and realistic development scenar-
ios, they might still be artificial with respect to the intrinsic complexity and
the constraints of open-source software development. Moreover, although
we have paid special attention to neutral wording in the vignettes, we can-
not exclude that the vignettes’ text influenced the sentiment of the SATD
comment written by respondents. Finally, to avoid having an excessively
long study (and therefore discouraging participation), we had to limit the
number of vignettes to five. This makes their diversity, depth and breadth
with respect to the other analysis we did on the Maldonado et al. dataset
fairly limited. For this reason, we cannot directly compare the results of the
two studies used to answer RQ5.4.

Threats to internal validity are related to factors internal to our study that
can affect our results. Although we created a relatively large and statistically
significant sample, we cannot exclude that our sampling strategy is weakly
representative of the studied dataset. In particular, we sampled our dataset
starting from the data and categories of Maldonado et al., so we might have
inherited representativeness threats from the original study. Measurement
imprecision in RQ5.5 has been mitigated, where it matters, through manual
analysis.

A further threat affecting RQ5.3 and RQ5.4 may be represented by the
sentiment of SATD comments submitted by the survey participants for our
vignettes. While we asked them to behave as they were working on their
own project, their actual sentiment may be different from a real development
context (e.g., when a developer finds that somebody has introduced some
poor source code) to an artificial setting, where one may tend to be more
polite. At the same time, the artificial context of the survey might release
some of the pressure induced on the developers by the need to conform to

5.6. THREATS TO VALIDITY 161

the norms of the professional behavior at the workplace.

In this work we find that 29 of the comments from the dataset of Maldonado
et al. contain references to external bug reports or urls. However, these
references might not be up to date anymore as Li and Zhong [146] have
found that some bug reports become obsolete over time.

To ensure that we only study the practices of open-source software projects,
we ask participants whether they have contributed to open-source software
projects in the past three months. However, this does not exclude the possi-
bility that we received responses from participants who mostly contribute to
commercial software projects, and only sparingly contribute to open-source
in the past three months. To minimize the risk of these participants an-
swering based on their commercial experience, we explicitly included the
text ’you are working on an open-source application’ in each question of
the survey.

Finally, the order in which we presented vignettes may have impacted the
comments written by respondents. We mitigated this threat by using ver-
sions of the survey with a different ordering, and by using PERMANOVA,
[23] to analyze the ordering effect and discuss how ordering could have
influenced the results (see Section 5.3.1).

Threats to external validity concern the generalizability of our findings. The
qualitative nature of the study (especially RQ5.1) and the need for manual
inspection for all three research questions do not make a large-scale anal-
ysis feasible. Therefore, although the sample is statistically significant, it
may not generalize to further projects and programming languages different
from Java. For RQ5.1, although we reached saturation when identifying cat-
egories, we cannot exclude that new categories would emerge when looking
at further datasets. Both components of the study—the SATD comment
mining part and the survey—focus on a (relatively limited) set of open-
source projects, therefore results might not generalize further. That being
said, previous work of Zampetti et al. [291] showed that the differences in
SATD practices between industry and open source are fairly limited.

Finally, in our survey study, we recruited participants by advertising the
questionnaires through messages to mailing lists, posts on social media, and
personal contacts. On one hand, this is in line with our assumption that
the different communication channels we used to recruit the participants do
not influence the population. On the other hand, this allows us to reach a

162 CHAPTER 5. SATD AND POLARITY

broader and more diverse audience. However, we are aware this might have
potentially introduced threats due to mixed recruiting strategy.

5.7 Conclusion
In this chapter, we have studied developers’ practices related to Self-Admitted
Technical Debt (SATD) in open-source software projects. More specifically,
we investigated (i) the content of SATD comments, (ii) the methods used
to indicate priority in SATD, (iii) the extent to which developers believe
that the expression of negative sentiment in SATD is acceptable, (iv) how
negative polarity occurs in different kinds of SATD, and (v) whether devel-
opers add details such as URLs, contributors’ names, timestamps, or bug
IDs in SATD comments. The study has combined the manual classification
of 1038 SATD comments from a curated dataset of da S. Maldonado et al.
[67], with a survey involving 46 open-source developers, which comprised
open-ended and closed-ended questions about SATD annotation practices,
as well as tasks requiring to write SATD comments for vignettes [223] de-
picting scenarios where TD could be admitted.

We found that SATD is spread across different categories, and that different
problems are described in SATD. SATD comments are often related to
functional issues and partially-implemented functionality, but also to poor
implementation choices, and waiting for other features to be ready/APIs
to be available. Less frequent, though non-negligible, are SATD comments
related to documentation and tests. A group of developers (13 out of 44)
acknowledges the use of negativity in the source code to indicate extra-
priority, tentatively confirming what conjectured in previous literature [94,
270, 150]. Therefore, in Chapter 6 we further study the relation between
perception of priority and negativity, to verify whether the self-reported
behavior of developers aligns with their actions.

Although we found the presence of various pieces of additional information
in SATD comments (including bug IDs), survey respondents argued that
SATD comments in the source code should not be used to trigger devel-
opment activities or to highlight problems; issue trackers should be used
instead. However, the use of issue trackers does not solve the problem of
ensuring traceability between issues and source code elements being affected
by SATD.

All the above findings foster future research on SATD, primarily aimed at

5.7. CONCLUSION 163

helping developers in better writing SATD, also considering that previous
research already found ways to recommend when SATD should be admit-
ted [292]. Primarily, tools should help developers to properly write SATD
comments, by using a suitable polarity, but at the same by including proper
pieces of information such as links to external resources, or authorship in-
formation. More importantly, better support than just using issue trackers
is highly desirable, especially to establish traceability between TD-affected
code and issues.

164 CHAPTER 5. SATD AND POLARITY

Chapter 6
Negativity and the
Prioritization of
Self-Admitted Technical
Debt

Self-Admitted Technical Debt, or SATD, is a self-admission technical debt
in a software system. The presence of SATD in software systems negatively
affects developers, therefore, managing and addressing SATD is crucial for
software engineering. To effectively manage SATD, developers need to esti-
mate its priority and assess how much effort is required to fix the described
technical debt. About a quarter of descriptions of SATD in software sys-
tems express some form of negativity or negative emotions when describing
technical debt. In this chapter, we report on an experiment conducted
with 59 experienced industrial developers to test whether negativity in the
description of SATD actually affects the prioritization of SATD. We asked
participants to prioritize four vignettes based on existing instances of SATD.
By artificially introducing or removing negativity in the vignettes, we find
that the same technical issue is prioritized differently by between 30% to
50% of developers if negativity is present. Whether a developer is affected
by negativity is conditional on their own perceptions. Developers affected
by negativity when prioritizing SATD are twice as likely to increase their

165

166 CHAPTER 6. SATD AND PRIORITIZATION

estimation of urgency and 1.5 times as likely to increase their estimation of
importance and effort for SATD compared to the likelihood of decreasing
these prioritization scores. Our findings show how developers use source-
code comments to communicate not just technical issues but also negativity
as a proxy for priority. Using negativity to describe technical debt might be
an effective strategy for individual developers to draw attention to the tech-
nical debt they think is important. However, our study also shows that 67%
of developers believe that using negativity as a proxy for priority is unac-
ceptable. Therefore, we would not recommend developers to use negativity
as proxy for priority, however, given the demoralizing impact of technical
debt, it might also be unavoidable that negativity is expressed to describe
technical debt.

6.1 Introduction

Technical Debt is used as a metaphor by developers to describe suboptimal
implementations that require future re-implementations to fix the existing
implementation [63, 265]. Technical debt is pervasive as a large number
of developers is familiar, and even affected by, it [147]. The presence of
technical debt in a system is known to have negative effects: it not only
makes it more difficult to modify a software project [277], but developers
working on a system where technical debt is present also have reduced
morale [36].

Self-Admitted Technical Debt, or SATD, is a specific category of Technical
Debt. SATD is characterized by explicit admissions of developers indicating
the presence of technical debt [215]. Both technical debt and SATD have
been extensively studied, including aspects of SATD such as the automatic
identification [164, 107] or the management and removal of SATD [164,
294, 295, 260]. Specifically, we know that developers use SATD to describe
a wide range of technical issues [165, 52]. In particular, existing taxonomies
of SATD instances show that developers tend to describe functional issues
or poor implementation choices.

Within literature, texts expressing negative sentiment or having negative
polarity express negative emotions The text has a positive polarity if it
expresses positive emotions and neutral polarity if it expresses no emo-
tions [193]. The automatic classification of sentiment in software engi-
neering texts has been used to study many different aspects of software

6.1. INTRODUCTION 167

engineering [149], such as in the code-review process [240], or on Stack
Overflow [45, 259]. We know that the presence of technical debt, or design
smells, can cause developers to experience negative emotions [196]. Fur-
thermore, it has also been found that in roughly 20% of SATD instances,
negativity, or negative emotions, are used to describe the SATD [52]. From
the psychological literature, we know that emotionally salient information is
more likely to capture attention in the working memory of the brain [195].
Similarly, when it comes to issue resolution, previous work has found that
there appears to be a link between the expression of positive sentiment and
a faster resolution of issues [197, 228]. While Calefato et al. [45] concluded
that Stack Overflow questions that are neutral, or in which no sentiment
is expressed, are more likely to receive an answer. Focusing on SATD, a
quarter of the developers surveyed by Cassee et al. [52] stated that they use
negative emotions to describe high-priority SATD, and that they interpret
negativity expressed in SATD as a proxy for priority. Because there is often
a gap between respondents’ beliefs, and their actions [30], we want to un-
derstand whether expressions of negativity in SATD influence prioritization.
Therefore, we pose the following research question:

RQ6.1: Do developers interpret technical debt annotated with
negative source-code comments as having a higher priority?

While there are many different ways to prioritize technical debt [142] it is
currently unknown whether expressions of negativity influence the percep-
tion of the priority of technical debt. Because of how challenging effort
estimation is [181], it is important to understand how negativity influences
the prioritization of technical debt. If negativity influences prioritization, it
might lead to unintended consequences, as technical debt might be priori-
tized not because it is important or urgent but because negativity has been
used to describe it.

We use a vignette-based experimental design to address RQ6.1. By pur-
posefully selecting a realistic set of SATD instances, creating variations of
these SATD instances in which negativity is expressed, and assigning them
in a between-participants design, we study the effect of negativity on prior-
itization. We sampled respondents from open-source software mailing lists
and industrial contacts in the Eindhoven region of the Netherlands.

Based on the responses of 59 participants, we conclude that between 30%
to 50% of developers score the priority of technical debt as higher if neg-
ativity is expressed in its description. Most importantly, even developers

168 CHAPTER 6. SATD AND PRIORITIZATION

who self-report that they are not influenced by negativity are more likely
to increase their estimation of the effort required to fix SATD if negativity
is expressed. Our results show that developers use SATD not just to de-
scribe technical issues but also use negativity in descriptions of SATD as an
additional dimension to communicate priority.

6.2 Methodology
In this section, we describe an experiment conducted to understand whether
negativity influences the prioritization of SATD. First, we justify our choice
to use controlled experiments. Then we explain the design of the exper-
iment, and the instruments used in the experiment, and we explain the
method used to analyze the data.

6.2.1 Choice of Research Method
In this section, we discuss several potential research methods that could be
used to understand the impact of negativity on priority using the framework
of Robillard et al. [222] Specifically, we discuss our choice, the potential
alternatives, our considerations, our rationale, and the implications of the
choice.
We first briefly describe the three alternatives we considered: A controlled
experiment, a Mining Software Repository (MSR) study, and an interview.
In a controlled experiment, we would ask participants to prioritize different
SATD instances, while for an MSR study, we would analyze whether SATD
in which negativity is expressed is removed quicker. Finally, in an interview,
we would ask participants about their past prioritization practices.
The most important consideration for our choice of method is our expec-
tation that any effect of negativity on the perception of priority might be
relatively small. Previous correlational studies on the impact of sentiment
on software engineering have generally found small effect sizes [56, 45, 196].
Therefore, we require a research method that gives us a high level of con-
trol. Furthermore, many factors influence prioritization, as prioritization of
Technical Debt is a complex process, and many factors influence how it
is prioritized [142]. This will also limit the effect of a single factor, such
as the expression of negativity, on priority. Because of the relatively small
effect size, estimating the true effect of negativity on prioritization is more
difficult: Many confounding variables might influence the removal of SATD,

6.2. METHODOLOGY 169

and in fact, even classifying whether the removal of SATD was purposeful
is already challenging [294]. The presence of confounding variables and
the noise introduced by potentially inaccurate classifications of removal has
made us decide to not use an MSR study.
The second consideration is the observation that human recollection is not
optimal which results in humans misremembering, especially when asked
about past events [122, 219]. For an interview study or a survey, in which
we ask participants about choices they made in the past related to the
prioritization of SATD this might be problematic. Similarly, while we could
ask about current prioritization practices, this still has the downside that
our questions would be hypothetical.
Because of these two considerations, we opt for controlled experiments as
research method to study the prioritization of SATD. The first implication
of our choice for controlled experiments is that we have a high level of
control [251, 253]. We can use this control to account for as many relevant
confounding variables that could also influence prioritization as possible.
However, the second implication of our choice is reduced realism, as with
any experimental study [251]. Asking respondents to prioritize SATD in
an experimental context is not very realistic. The context in which the
respondents usually prioritize SATD is likely not the experimental setup.
Therefore, the effect we observe in the experiments might not be the effect
observed in the field, however, using an experimental set-up can be expected
to allow us to understand with certainty whether any effect exists.

6.2.2 Experimental Design
For RQ6.1 we use a between-person experimental vignette design according
to the guidelines of Aguinis and Bradley [16]. To maximize realism of the
experiment the vignettes we show to participants are instances of SATD,
each containing a snippet of source code containing technical debt and a
source code comment describing the technical debt. We ask participants to
score the priority of the vignettes, and by experimentally varying whether
negativity is expressed in the source code comment describing the SATD,
to investigate whether negativity influences prioritization.
Operationalization of Priority: The concept of priority is quite a broad
topic; different respondents might interpret the meaning of priority differ-
ently. Therefore, following existing guidelines [16], we “split” the concept
of priority into three constructs: Urgency, Importance, and Effort. Both

170 CHAPTER 6. SATD AND PRIORITIZATION

urgency and importance are common constructs used to operationalize pri-
ority [177, 97, 34], and effort is used to determine the cost of Technical
Debt repayment [142].

Participant recruitment: The target population for the experiment are soft-
ware engineers, and we do not require any minimum working experience.
Because recruiting of participants for software engineering studies is chal-
lenging, we use different channels to recruit participants [70]. In particular,
we posted the invitation to participate in the experiment on a set of mail-
ing lists previously used to recruit software engineers [164, 52] and on the
social-media pages of the authors, as well as used convenience sampling to
invite developers at medium to large software companies in the Eindhoven
region of the Netherlands. To ensure that we did not burden the mailing
lists, we sent out invitations piecemeal, a few a day, and we only posted
the call to participate on active mailing lists. The Ethical Review Board of
Eindhoven University of Technology approved both the experiment and the
recruitment strategy.1

Table 6.1: The questions and response options per question as included in
the experiment.

Q1 How would you rate the Urgency of the listed
code-snippet? In this context we define urgency
as whether swift action is required to address the
technical debt item.

One of: Very low, Low,
Medium, High, Very high

Q2 How would you rate the Importance of the
listed code-snippet? In this context we define
importance as the impact of the technical debt
item.

One of: Very low, Low,
Medium, High, Very high

Q3 How would you rate the Effort required to
address the listed code-snippet? In this context
we define effort as the amount of work required
to address the technical debt item.

One of: Very low, Low,
Medium, High, Very high

Perception (Re-used from Cassee et al. [52]) Response type

Question Response Type

Continued on next page

1Reference: ERB2023MCS17

6.2. METHODOLOGY 171

Table 6.1: The questions and response options per question as included in
the experiment. (continued)

Q4 When writing source code, how often do you
write source code comments indicating delayed or
intended work activities such as TODO, FIXME,
hack, workaround, etc.?

Never, Rarely (Less than
once a month), Sometimes
(Monthly), Often (Weekly),
Very often (Daily)

Q5 When authoring comments that describe a
problem, how often do you write negative source-
code comments indicating delayed or intended
work activities such as TODO, FIXME, hack,
workaround, etc.?

Never, Rarely (Less than
once a month), Sometimes
(Monthly), Often (Weekly),
Very often (Daily)

Q6 How often do you come across negative
source-code comments indicating delayed or in-
tended work activities such as TODO, FIXME,
hack, workaround, etc.?

Never, Rarely (Less than
once a month), Sometimes
(Monthly), Often (Weekly),
Very often (Daily)

Q7 While writing a comment describing an issue
in the source-code, I am more likely to write neg-
ative comments for issues that I believe are more
important.

Strongly disagree, Disagree,
Neutral, Agree, Strongly
agree

Q8 Writing negative comments to assign extra
priority to issues in the source-code is an accept-
able practice.

Strongly disagree, Disagree,
Neutral, Agree, Strongly
agree

Q9 Whenever I come across a source-code com-
ment describing a problem that is particularly
negative, I interpret this as a more important
issue than a source-code comment describing a
problem that is more neutral.

Strongly disagree, Disagree,
Neutral, Agree, Strongly
agree

Demographics Response type

Q10 What is your age? Open numerical input
Q11 Which of the following best describes your
current employment status?

One of: “Employed”, “In-
dependent contractor, free-
lancer or self-employed”, “
Student”, “Not employed”,
“Prefer not to say”, “Re-
tired”

Question Response Type

Continued on next page

172 CHAPTER 6. SATD AND PRIORITIZATION

Table 6.1: The questions and response options per question as included in
the experiment. (continued)

Q12 Which of the following best describes the
code you write outside of work? Select all that
apply.

One or more of: “Con-
tribute to open-source
software”, “Hobby”, “Free-
lance/contract work”,
“School or academic work”,
“Bootstrapping a business”,
“I do not write code outside
of work”

Q13 How many years of programming experience
do you have?

Open numerical input

Question Response Type

Instrument Design: table 6.1 contains an overview of the questions as in-
cluded in the survey. The instrument is divided into three sections: The
first section contains the questions we ask per vignette. To ensure the
constructs Effort, Urgency and Importance were interpreted equally by all
participants we provided the italicized definitions included in Table 6.1. The
second section contains a set of questions on the perception of participants
about the usage of negativity as a proxy for priority, and the third section
contains questions on participants’ demographics. The questions on demo-
graphics were placed at the end of the survey to prevent them from biasing
participants [248].

The demographic questions included in the survey are related to the re-
spondents’ age and working experience. We record working experience
because open and closed source developers are known to manage SATD
differently [291]. Experience can be defined in many different ways [239],
and for this experiment, we choose to re-use questions about experience
from the Stack Overflow developer survey.2 We also ask respondents to
indicate their age as an optional open input question, following the rec-
ommendations from Hughes et al. [116]. We record the age because age
tends to influence how people experience emotions [289]. Finally, we also
expect developer’s attitude towards the practice of using negativity as a
proxy for priority to influence prioritization. Therefore, we re-use the closed

2https://survey.stackoverflow.co/2022#overview

https://survey.stackoverflow.co/2022#overview

6.2. METHODOLOGY 173

questions from the study of Cassee et al. [52], in which developers are asked
about their perceptions and beliefs about the usage of SATD as a proxy for
priority.

Vignette selection: For the experiment, the vignettes should be as realistic
as possible [16]. Therefore, as vignettes, we select SATD instances from an
existing dataset of SATD items. The dataset was gathered by Maldonado
et al. [164], and we use the version of Cassee et al. [52] in which the SATD
instances have been categorized based on the type of problem described
in the SATD. We select SATD instances from a single category to mini-
mize the risk that differences between SATD instances influence the results.
The category we select is Poor Implementation Choices, the most populous
SATD category, and a category in which about 30% of the SATD instances
express negativity.

We select four SATD instances from the dataset; we do not select any
more to reduce respondent fatigue and the odds of disengaging. Because
the comments in the dataset of Cassee et al. have already been labeled
with sentiment polarity, we select two comments that have been labeled
as negative and two comments that have been labeled as non-negative.
The dataset of Cassee et al. identifies three different sentiment classes
in SATD: negative, non-negative, and mixed. The mixed class, however,
occurs in less than 2% of cases. Consequently, we exclude the mixed class
and only sample from the negative and non-negative classes. Additionally,
due to the negative connotations of technical debt, we expect a low number
of positive instance [52]. Therefore, we exclude these, focusing solely on
negative versus non-negative instances.

The selection of SATD instances is performed manually: we pay careful
attention to ensure that we select instances that are comprehensible and
self-contained, such that the respondents can understand them without
becoming fatigued or confused. Alternative generation: For the between-
person design of the experiment, we require that each of the four selected
vignettes has two variations: a neutral instance and a negative instance.
One of the two variations can be randomly assigned to a participant. For
each of the selected vignettes, we create a manipulated variation expressing
a different sentiment polarity than the original. The two crucial require-
ments for these manipulated instances are: The semantics of the original
comment should be preserved, i.e., the alternative comment should describe
the same problem as the original comment, and the manipulated comment

174 CHAPTER 6. SATD AND PRIORITIZATION

should express the requested sentiment polarity.

To generate manipulated comments we used ChatGPT.3 Through Chat-
GPT, we aim to reduce the risk that our own perception of what negativ-
ity in SATD looks like influences manipulated alternatives we would draft
ourselves. We manually validate the comment generated by ChatGPT to
ensure the manipulated comment meets the previously listed requirements.
For each SATD instance, we prompt ChatGPT to generate three alternative
comments that express a sentiment opposite to the sentiment expressed in
the instance. We iteratively refined the prompt used to generate the alter-
native comments and we evaluated the alternatives generated by ChatGPT
until all authors were satisfied that each alternative was sufficiently realistic.
This process took several iterations. Listed below is the prompt used for
the sentiment transfer from negative to neutral:

“Take the following source-code comment, and change the lan-
guage of the source-code comment to ensure that the result-
ing source-code comment contains neutral sentiment. Gener-
ate three alternative, neutral, source-code comments, but make
sure to preserve the original meaning of the comment as much
as possible:"

After finalizing the prompt, three of this chapter’s authors independently
voted to select the best-manipulated variation of the SATD instance from
the three alternatives. Criteria for voting adhere to the requirements listed
above: Did the sentiment transfer work (“Is the comment actually neu-
tral?"), and whether the manipulated comment describes the same problem
as the original comment. We selected the best alternative comments for
each of the four selected SATD instances based on the votes. For three
manipulated instances, all authors voted for the same alternative; for the
fourth instance, two of the three voters preferred one.

3Version 3.5, accessed in November 2023 at https://chat.openai.com

https://chat.openai.com

6.2. METHODOLOGY 175

Table 6.2: The vignettes as they were used in the experiment. The source
code is matched to either the Negative or Neutral comment and
shown to the participant. The (M) indicates that the comment
was generated using ChatGPT.

Vignette #1
public static boolean useThetaStyleImplicitJoins;
public static boolean regressionStyleJoinSuppression;

Negative // USED ONLY FOR REGRESSION TESTING!!!! todo :
↪→ obviously get rid of all this junk

Neutral (M) // Used only for regression testing! todo: clearly remove all
↪→ this unnecessary code

Vignette #2 ConstDeclNode constDeclNode = (ConstDeclNode) node;
Node constNode = constDeclNode.getConstNode();

Neutral // TODO: callback for value would be more efficient, but
↪→ unlikely to be a big cost (constants are rarely
↪→ assigned)

Negative (M) // TODO: This is frustrating! A callback for value would
↪→ be more efficient, but unlikely to be a big cost (
↪→ constants are rarely assigned).

Vignette #3 public class ConstDeclNode extends AssignableNode
↪→ implements INameNode

private final String name;
private final INameNode constNode;
...
}

Neutral // FIXME: ConstDecl could be two seperate classes (or
↪→ done differently since constNode and name never
↪→ exist at the same time).

Negative (M) // FIXME: Ugh, ConstDecl is a mess. It should have been
↪→ divided into distinct classes (or approached
↪→ differently) because constNode and name are never
↪→ in sync.

Type Item

Continued on next page

176 CHAPTER 6. SATD AND PRIORITIZATION

Table 6.2: The vignettes as they were used in the experiment. The source
code is matched to either the Negative or Neutral comment and
shown to the participant. The (M) indicates that the comment
was generated using ChatGPT. (Continued)

Vignette #4 if (plot instanceof PiePlot) {
applyToPiePlot((PiePlot) plot);

}
else if (plot instanceof MultiplePiePlot) {

applyToMultiplePiePlot((MultiplePiePlot) plot);
}
else if (plot instanceof CategoryPlot) {

applyToCategoryPlot((CategoryPlot) plot);
}

Negative // now handle specific plot types (and yes, I know this is
↪→ some really ugly code that has to be manually
↪→ updated any time a new plot type is added − I
↪→ should have written something much cooler, but I
↪→ didn’t and neither did anyone else).

Neutral (M) // Now address specific plot types (and yes, I am aware
↪→ that this code needs manual updates whenever a new
↪→ plot type is added − a more advanced
↪→ implementation could have been developed, but it
↪→ wasn’t, and no other approach was proposed).

Type Item

Table 6.2 contains an overview of the selected vignettes. Each vignette
combines a short source-code snippet with an accompanying source-code
comment that “admits” technical debt in the snippet. The Type column lists
the sentiment polarity expressed by the comment, and the (M) tag denotes
that the comment on that line has been generated using ChatGPT.

Vignette Assignment: Respondents are assigned to one of the two variations
for each vignette. However, the assignment of variation to respondents is
not fully random. When assigning variations, we consider the alternative
comments generated by ChatGPT as a blocking factor [124], hereafter re-
ferred to as Manipulation.

We defined two experimental flows to limit the effect of the manipulation

6.2. METHODOLOGY 177

Table 6.3: The two different flows used for the vignette section of the survey.
Sentiment is the sentiment expressed in the vignette, while Manipulated
denotes whether the respondent in the flow sees the original comment or
the manipulated one.

V1 V2 V3 V4

Flow 1 Sentiment negative neutral negative neutral
Manipulated ✕ ✕ ✓ ✓

Flow 2 Sentiment neutral negative neutral negative
Manipulated ✓ ✓ ✕ ✕

PrioritizationSentiment

Figure 6.1: A Directed Acyclic Graph (DAG) illustrating the relation we are
analyzing.

on the outcome. Table 6.3 shows these two flows. Observe that we en-
sure that each respondent sees two neutral and two negative vignettes and
sees two manipulated and two original vignettes. Participants are randomly
assigned to one of the two flows, and within a flow to order of the four
vignettes is randomized, such that the impact of the blocking factors is
limited [28].

Finally, to validate that the vignettes shown in the experiment were appro-
priate, and the questions asked were understandable, we piloted the survey
with a set of four active software engineers. Based on the feedback of
the pilot we made minor text changes to the wording of some questions,
and clarified a few concepts a bit better. The experiment was hosted using
Qualtrics.4

178 CHAPTER 6. SATD AND PRIORITIZATION

6.2.3 Data Analysis
Figure 6.1 visualizes the relation we study in this manuscript as a Directed
Acyclic Graph (DAG). In a DAG, nodes are used to represent variables, and
arrows between nodes represent causal relations between variables [82]. For
instance, Figure 6.1 should be interpreted as “A change in sentiment leads
to a change in prioritization”.
The analysis would be relatively straightforward under the assumption that
Figure 6.1 is the correct model capturing all relevant effects. However,
while we attempted to control for as many confounding variables in the
experimental design, there were confounding factors we could not control
for. For instance, manipulating the vignettes to transfer sentiment could
also have affected the prioritization. Therefore, we create a more complete
DAG that contains all other variables that might influence the prioritization
of Technical Debt.

Technical Debt Effort

Experience

Manipulated

Perception

Priority

Sentiment

Urgency

Figure 6.2: The theoretical model visualized as a DAG.

fig. 6.2 shows the complete model; note that Prioritization (from Figure 6.1)
is split into three outcome nodes in Figure 6.2: Effort, Urgency, and Im-
portance. These three variables are all directly influenced by the Technical
Debt present in the vignette shown to the respondents. Other variables that
influence the prioritization are whether we Manipulated the vignette, and
whether the Sentiment expressed in the vignette was negative. Because we

4https://www.qualtrics.com/

https://www.qualtrics.com/

6.2. METHODOLOGY 179

manipulated the expression of sentiment, we also expect the manipulation
to influence how negativity influences the outcome variables. Finally, each
respondent has their own perception of the acceptability of negativity as
a proxy for priority, in turn, influenced by their own experience [289, 291].
This will influence how negativity affects their prioritization of the techni-
cal debt and how the expression of negativity influences the prioritization.

Given the DAG shown in Figure 6.2, understanding the effect of negativ-
ity on Prioritization (measured as effort, urgency, and prioritization) re-
quires adjusting for the confounding variables. To properly adjust for these
confounders, we use Bayesian statistics [98]. Another benefit of Bayesian
statistics is that, unlike in frequentist statistics, the output does not have
a binary outcome indicating whether the results are significant. Instead,
using Bayesian statistics, we can better account for any uncertainty in the
data [92, 172, 133]. By following existing guidelines [99, 92] and the exam-
ples of the applications of Bayesian statistics to software engineering data
[266, 101] we ensure that our data analysis is robust.

In the remainder of this section, we first describe the Bayesian models we
fit to the data. Then, we explain how we use the models to understand the
effect of negative sentiment on the prioritization of SATD.

Outcome ∼ Ordered-logit(ϕ,κ)
ϕ = αeffects[N, P] +αmanipulated[M] +αexperience ∗E

αeffects ∼ Normal(0,0.5)
αmanipulated ∼ Normal(0,0.5)

αexperience ∼ Normal(0,0.5)

κ ∼ Normal(0,1.5)
Where N,M ∈ {True,False}

P ∈ {Disagree,No Opinion,Agree}
(Model 1)

Model: Based on the causal graph of Figure 6.2, we should adjust for three
variables: perception, manipulated, and experience. Model 1 shows the

180 CHAPTER 6. SATD AND PRIORITIZATION

model we use, where Outcome is the score given by a participant to the
vignette. Because we have three outcome constructs: Effort, Importance,
Urgency, we fit one model per construct. The first line shows the choice of
the likelihood function, an Ordered-logit. The second line shows the choice
of model parameters, indicated by the prefix α, lines 3–6 show the choice of
priors, and lines 7–8 show the allowed values for the input variables.

Because each of the outcomes are responses on a Likert scale, we use an
Ordered Logit as a likelihood function [172]. The model has four input
variables (typeset in red and italics): Whether the vignette shown to the
developer was negative (N), whether the vignette was manipulated (M),
what the perception of the respondent was (P), and the experience of the
respondent (E). Negative and manipulated are binary variables, perception
is a trinary variable based on the respondent’s answer to Q9, and age is a
natural number. effects is a 2 by 3 matrix with a model parameter for
each combination of N and P . Manipulated is a vector of length 2, for
each value of M , and experience, E, is a single parameter.

These models are fit using Hamiltonian Monte-Carlo simulations. We use
prior predictive checks for each model to understand whether the priors
provided enough information.

Estimating Effects: We use the three models, fit for each of the three
outcome variables, to quantify the impact of negativity on prioritization.
First, we plot the distribution of the model parameters related to sentiment,
the so-called posterior, as density plots. The posterior plots show the effect
on the outcome variable that the model associates with a change from
neutral to negative sentiment and are commonly used to interpret results of
Bayesian models [172]. We also use the posterior to compute the Evidence
Ratio of the effect of negativity and interpret the evidence ratio according
to Stefan et al. [249].

Through the posteriors we can understand whether negativity influences
prioritization, however, it does not allow us to quantify how often nega-
tivity leads to a different prioritization score. Therefore, we also use the
fitted models to simulate the effect of negativity i.e., “What are the odds
that changing sentiment from neutral to negative increases the prioritiza-
tion score?” To do this, we manually fix the input variables (N , M , P)
to obtain two simulated distributions of prioritization scores for a SATD
instance: a set of prioritization scores for an SATD instance with neutral
sentiment, and SATD instance with negative sentiment. We can quantify

6.3. RESULTS 181

how negativity influences the outcome variable by computing the contrast
between these two distributions. Because Model 1 has as input the per-
ception of the respondent, whether the vignette has been manipulated, and
the experience of the respondent we have to fix values for all three. As we
are not interested in a scenario in which the vignettes are manipulated, we
fix M to false. Similarly, we set E to the mean experience value of the
respondents. Finally, we can not fix the value of P to one particular value
for perception. Therefore, we compute a contrast distribution for each value
of P (Disagree, Indifferent, Agree).

Perception and Demographics Respondents’ answers to the closed ques-
tions and demographics are visualized. As the questions on Perception are
taken verbatim from the study of Cassee et al. [52] the results obtained in
this experiment are compared to those of the original study. Meanwhile,
the answers to questions on demographics taken from the Stack Overflow
survey will be compared to the most recent results of the Stack Overflow
survey.

6.3 Results
In total, we received 75 full and partial responses to the experiment. Based
on a manual check, we removed one response because the values provided
by the respondent for age and experience were unrealistic. Because we also
accepted partial responses and because the instrument contained optional
questions, we discuss the number of relevant and full responses included per
question.

6.3.1 Demographics

Figure 6.3 shows the respondent age and experience distributions. The bins
for both plots are identical to the bins of the Stack Overflow developer
survey.5 We compare the demographics to the Stack Overflow developer
survey because the Stack Overflow survey is one of the largest surveys
of developers, with almost 90,000 respondents for 2023. For age, our
experiment’s population appears to be a bit older than the responses to the
Stack Overflow developer survey. Notably, we saw no respondents younger
than 18 or older than 64. Experience-wise, the distribution of respondents is

5https://survey.stackoverflow.co/2023/#overview

https://survey.stackoverflow.co/2023/#overview

182 CHAPTER 6. SATD AND PRIORITIZATION

< 18

18 - 24

25 - 34

35 - 44

45 - 54

55 - 64

> 64

Ag
e
(y
ea

rs
)

0.00%

20.75%

30.19%

28.30%

18.87%

1.89%

0.00%

Distribution of Age (Responses: 53)

(a)

< 1
1 - 4
5 - 9

10 - 14
15 - 19
20 - 24
25 - 29
30 - 34
35 - 39
40 - 44
45 - 49

> 50

Ex
pe

rie
nc

e
(y
ea

rs
)

0.00%
16.95%

25.42%
13.56%

11.86%
8.47%

11.86%
3.39%

1.69%
5.08%

1.69%
0.00%

Distribution of Experience (Responses: 59)

(b)

Figure 6.3: Histograms for respondent age and experience.

quite similar to that of the Stack Overflow survey. Most importantly, there
are no large differences between our respondents and the respondents to the
Stack Overflow survey. Therefore, we conclude, based on the distributions
of age and experience, that our respondents are a good representation of
the general developer population for these two characteristics.

Table 6.4: The self-described employment status and the self-described cod-
ing outside of respondents’ work.

Employed full-
time

45 76.27% Personal projects 20 64.52%

Student, full-
time

8 13.56% I do not write
code outside of
work

7 22.58%

Self-employed 4 6.78% School or Aca-
demic

3 9.68%

Employed part-
time

2 3.39% Open-source 1 3.23%

Total 59 100.00% Total 31 100.00%

Employment
Status

% Coding outside
of Work

%

Table 6.4 shows respondents’ employment status and the coding respon-
dents do outside of work. A large majority of the respondents are profes-

6.3. RESULTS 183

Disagree

No Opinion

Agree

−1 0 1

Posteriors for Effort

(a)

Disagree

No Opinion

Agree

−1.0 −0.5 0.0 0.5 1.0 1.5

Posteriors for Importance

(b)

Disagree

No Opinion

Agree

−1 0 1

Posteriors for Urgency

(c)

Figure 6.4: Distributions of the posterior for each of the outcome variables.

sional developers who are employed full-time.

6.3.2 Negativity’s Effect on Prioritization

For the Bayesian models, we can only use responses for which all questions
used in the model have received a response, in particular, this includes the
demographic question on respondent experience (Q13). This requirement
leaves 59 valid responses for the experiment on which the models have been
fit.

Figure 6.4 visualizes the density distribution for the posteriors related to
the effect of sentiment on the outcome. In other words, this figure shows
the effect the model associates with a change in sentiment from neutral to
negative. A positive value indicates that a change from neutral to negative
increases the prioritization score. As can be observed in Figure 6.4, the
distributions of the priors are generally quite wide, and they overlap with
the dashed line indicating zero. However, this uncertainty is not unex-
pected or uncommon in Bayesian analysis, especially in studies with smaller
samples [101, 88].

184 CHAPTER 6. SATD AND PRIORITIZATION

Table 6.5: Evidence ratio table for the hypothesis that negativity increases
the prioritization score for each of the outcome variables.

Agree Moderate for Strong for Strong for
No Opinion Moderate for Anecdotal for Anecdotal

against
Disagree Anecdotal

against
Anecdotal for Anecdotal

against

Perception Effort Urgency Importance

Because we adjusted the models for the Perception of the participants,
the effect of sentiment on the outcome can vary for each of the three
levels of Perception. The labels Disagree, No Opinion, Agree therefore
show the effect of negative sentiment on prioritization based on whether
the participants believe that negativity should be interpreted as a signal that
the SATD has a higher priority. The posteriors indicate that participants
who agreed with the use of negativity as a proxy for priority were also more
likely to assign a higher priority score, for all of the three measured variables.
More interestingly, participants who indicated they had no opinion on the
use of negativity as a proxy for priority increase the score for effort. Finally,
for the other groups and outcomes we see that the models do not associate
any impact of negativity, as the means all appear to be centered around
zero. Table 6.5 lists an interpretation of the Bayes factor, or the strength of
the evidence, of the hypothesis that negativity increases the prioritization.
We interpret the values for the Bayes factor according to Stefan et al.
[249].

Table 6.6: The odds ratio between the odds of the priority score increas-
ing compared to the odds of the score decreasing if sentiment
changes from neutral to negative. Bold font indicates whether
the evidence ratio supports the hypothesis that negativity in-
creases prioritization (Table 6.5).

Agree 1.38 1.97 1.53

Perception Effort Urgency Importance

Continued on next page

6.3. RESULTS 185

Table 6.6: The odds ratio between the odds of the priority score increas-
ing compared to the odds of the score decreasing if sentiment
changes from neutral to negative. Bold font indicates whether
the evidence ratio supports the hypothesis that negativity in-
creases prioritization (Table 6.5). (continued)

No Opinion 1.56 1.05 0.98
Disagree 0.94 1.07 0.93

Perception Effort Urgency Importance

However, quantifying the actual impact that negativity has e.g., answering
the question: “Does negativity make it more likely that SATD receives a
higher priority score?” is not possible based only on the plotted posteriors.
Therefore, we also used the models to simulate, per outcome variable, the
difference in priority scores for SATD expressing either neutral or negative
sentiment. This results in a set of probabilities: How likely is it that
negativity results in a higher priority score? How likely is it that negativity
results in a lower priority score? Table 6.6 shows the ratio between these
two odds for each outcome variable and for each value of Perception. From
this table, we conclude that respondents who interpret negativity as a signal
for importance (i.e., “Agree”) are also more likely to assign higher priority
scores for SATD expressing negative sentiment. In this case, the consistency
between respondents’ beliefs and actions is noteworthy, as the value-action
gap is a well-documented bias [30]. Secondly, Table 6.6 also shows that the
perception of Urgency (OR: 1.97) is more likely to be influenced by nega-
tive sentiment than Effort (OR: 1.38) and Importance (OR: 1.53). Finally,
respondents who had no opinion on whether they interpret negativity as
a signal of importance are likelier to assign a higher score for effort when
negativity is expressed.

Findings Negativity

Up to 57% of developers estimate the priority of self-admitted tech-
nical debt as higher when negativity is used to describe it. These
developers are between 1.4 and 2.0 times more likely to increase,
instead of decrease, their prioritization scores for self-admitted tech-
nical debt expressing negativity.

186 CHAPTER 6. SATD AND PRIORITIZATION

0%10%20%30%40%50%60%70%80% 10% 20% 30%
Percentage of Responses

How often do you come
across negative SATD?

How often do you
write negative SATD?

How often do
you write SATD?

18%

37%

15%

28%

37%

43%

38%

22%

28%

12%

5%

10%

Never
Rarely (Less than
once a month)
Sometimes (Monthly)
Often (Weekly)
Very often (Daily)

Figure 6.5: Responses to survey questions Q4, Q5, Q6.

6.3.3 Perceptions and Self-Reported Behavior

Figure 6.5 shows the responses to the questions asking participants about
how often they write or come across SATD that expresses negative senti-
ment. These results indicate that almost half of the developers encounter
SATD expressing negative sentiment monthly or even more often. However,
most developers, almost 75%, never, or rarely, write any SATD expressing
negative sentiment. The distributions observed in this study are similar to
the study of Cassee et al. [52]. The most important difference between this
study and the findings of Cassee et al. is that respondents to the experiment
tend to come across SATD expressing negativity less frequently. This could
be explained by the fact that we used convenience sampling through our
industrial contacts for this experiment, and because industrial developers
annotate SATD differently [291].

Figure 6.6 outlines the results to the questions on respondents perceptions.
Compared to Cassee et al. [52] the proportion of respondents indicating that
they strongly disagree with the statement that they interpret negativity as
a proxy for priority is smaller. For the other two statements the results for
this experiment are similar to those of Cassee et al..

From the combination of Figure 6.5 and Figure 6.6 we generally confirm
the findings of Cassee et al. [52]. A large majority of developers disagree
that writing SATDs that express negative sentiment to signal priority is
acceptable. However, even if most developers believe this, they still express
negativity in SATDs to indicate priority or state that they interpret negativity
as a proxy for priority.

6.4. DISCUSSION 187

0%10%20%30%40%50%60%70% 10% 20% 30% 40%
Percentage of Responses

I interpret negativity
as a proxy for priority.

Writing negative SATD
to indicate priority is

acceptable.

I draft negative SATD
for important issues.

12%

35%

17%

32%

32%

30%

20%

22%

28%

27%

12%

25%

10%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

Figure 6.6: Responses to survey questions Q7, Q8, Q9.

Findings Perceptions

Between 25% to 50% of developers draft and/or encounter self-
admitted technical debt expressing negativity. Meanwhile, 67% of
developers state that using negativity as a proxy for priority is unac-
ceptable.

6.4 Discussion

Our study shows that developers use source-code comments to communi-
cate not only description of technical debt but also priority. From previous
work, we know that source code comments have always been used for var-
ious purposes, including the description of technical-debt [206]. Further-
more, descriptions of technical debt in source-code comments cover a wide
range of technical issues [164, 52]. Based on the results of our experiment,
we enhance the existing body of knowledge on the role of source-code com-
ments in addressing technical debt. Specifically, we find that negativity in
these descriptions results in the same technical issue being prioritized differ-
ently. Therefore, we conclude that source code comments are not just used
by developers for the explicit purpose of describing technical issues, but that
negativity within these comments is used by developers as an extra dimen-
sion to communicate priority. We consider it as an extra dimension because
expressing negativity is never the primary purpose of such comments. How-
ever, this study and the previous survey [52] both show that negativity in

188 CHAPTER 6. SATD AND PRIORITIZATION

SATD is purposefully expressed and interpreted by developers as a proxy for
priority, in addition to a description of the technical issue.

Does this mean developers should use negativity to describe tech-
nical-debt they think is important? For individual developers, using
negative expressions to annotate the technical debt they are working on
might be an effective strategy. It could result in the issue they care about
being prioritized and, therefore, fixed before other technical debt is ad-
dressed. However, from a team perspective, this is a potentially problematic
strategy. Software projects are often characterized by only having limited
capacity available to work on technical debt [291], and developers using
negativity to describe technical debt lay claim to more of this capacity.
Secondly, whether developers are influenced by negativity is conditional to
their perceptions, so not everyone in a team will interpret the priority sim-
ilarly. Additionally, two-thirds of developers believe that using negativity
as a proxy for priority is unacceptable. Finally, technical debt demoralizes
developers [36], and expressions of negativity could be particularly demor-
alizing; therefore, we would not recommend developers use negativity as a
proxy for priority.

Does this mean developers should stop expressing negativity? Emo-
tions and sentiment are a part of everyday life [129]. It has long been
found that developers express emotions in many different software engi-
neering activities [168, 45, 149], and technical debt appears to be able to
trigger negative emotions in software engineers [196]. This makes it unre-
alistic to expect developers to stop expressing their emotions or opinions
completely. Instead, this study further shows how negativity can affect
the management of technical debt. However, we believe it is important to
emphasize that any negative emotions expressed are not directed towards
developers, as they sometimes are [94]. Especially as negativity directed
towards other developers could be considered toxic, with far-reaching con-
sequences [179, 216].

Generalizability & Future work: We expect the findings of this study to
apply to technical debt in general and not just to self-admitted technical
debt described in source-code comments. Because of both the high level of
control in the experiments and the participants’ experience backgrounds of
the participants, we expect the observed effect of negativity on prioritization

6.5. THREATS TO VALIDITY 189

to also translate to technical debt drafted in other places. Notably, this
includes places like issue-trackers, as these are places where technical debt
is often described [52, 291, 284].

Through the experiment, we conclude that negativity affects prioritization,
and we describe how developers use negativity in source-code comments to
communicate priority. However, a consequence of the high control of the
experiments is the reduced realism. Therefore, there is still an opportunity
for future work to understand how negativity in technical debt influences
prioritization in the “field” [253]. For instance, research methods or strate-
gies like ethnographic observations can be used to describe the prioritization
of technical debt in software projects, as opposed to the contrived setting of
the experiments, like the work of Aranda and Venolia [24] on bugs.

6.5 Threats to Validity
Notwithstanding the effort we have taken to ensure our results were valid,
factors outside of our control might still have influenced the results. To
discuss these threats to validity and our mitigations we use the framework
of Wohlin et al. [280], as the research method used in this chapter is a
controlled experiment.

Internal Validity: We carefully designed the experiments to reduce the
effect of confounders as much as possible, for instance, by randomizing the
order of vignettes, using existing instances of SATD, and by making sure
the instances were understandable. However, to create the vignettes we
manipulated descriptions to create either a negative or a neutral counter-
part. We took several precautions to reduce the bias of the manipulation
of the obtained results. These include ensuring a balance by creating two
negative and two neutral manipulated descriptions, generating several ma-
nipulated descriptions, and voting for the best one. Furthermore, we added
manipulation as a parameter to the model, to adjust for any remaining
bias.

Secondly, to prevent the respondents from guessing the hypothesis of the ex-
periment, and responding in line with their attitude towards the hypothesis,
we did not state the exact purpose of the experiments. Similarly, the vi-
gnettes did not indicate whether participants were viewing the neutral or the
negative instance. However, there is still a chance that some respondents

190 CHAPTER 6. SATD AND PRIORITIZATION

might have recognized the purpose of the experiments after scoring two or
more vignettes, and were therefore influenced by their own attitude.

External Validity: The respondents sampled for the experiment were di-
verse with respect to age and working experience, with a high proportion of
software engineers who were employed full-time. Therefore, we expect our
results to generalize to both open and closed-source developers. However,
the most important threat to external validity we identify is related to the
choice of vignettes. In the experiments, we only showed participants four
instances, or vignettes, of technical debt, and it is possible that the results
of this experiment might not generalize over other types or categories of
SATD. However, we tried to minimize the threat by using four different
vignettes instead of one, and therefore, trying to balance participant fatigue
or disengagement with generalizability.

Construct Validity: Most importantly, we recognize that Importance, Ur-
gency, and Effort as Likert scale questions are not operationalizations of
priority used in practice by developers to score technical debt. However, we
opted for these three constructs because they are one, easy to explain to
participants, and two because there is no universally accepted construct to
measure the priority of technical debt.

6.6 Related Work

The below section discusses the related work on SATD, its management,
and sentiment analysis in software engineering.

6.6.1 Self-Admitted Technical Debt

Many different aspects of technical debt have been studied previously [265],
such as, for instance, its management [144], or the financial aspects [21].
This work focuses on the self-admission of Technical Debt (SATD), often
present in software systems as source-code comments [165, 215]. As for
technical debt, many different aspects of SATD have been studied. Such
as the annotation practices of industry developers [291], the places where
SATD has been described [283, 284, 127], and the curation of datasets of
SATD instances [246, 107].

6.6. RELATED WORK 191

Because of the negative connotations of technical debt, research has focused
on the classification of SATD in source code. Liu et al. [158] found that a
SATD detector based on text-mining techniques can automatically identify
SATD. Meanwhile, Ren et al. [220] have used deep-learning models to clas-
sify whether source code snippets contain SATD, finding that these models,
trained on large datasets, can be competitive. However, what automatic de-
tection technique has the best predictive performance is not entirely known,
as Guo et al. [107] found that simple rule-based detection techniques can
still outperform existing deep-learning tools.

Another often studied aspect of SATD is its removal; both Palomba et al.
[201] and Peruma et al. [210] studied the link between refactorings and
SATD. Palomba et al. [201] found that code refactorings occur in locations
where SATD is present, while Peruma et al. [210] finds that code refactor-
ing often coincides with removing SATD. By studying a dataset of SATD
instances Maldonado et al. [164] found that 75% of SATD instances are
removed in subsequent source code revisions. Furthermore, Zampetti et al.
[294] found that the removal of SATD is acknowledged in commit messages.
Additionally, Zampetti et al. find that in 20% to 50% of cases, SATD is
removed when entire methods or classes are removed. By surveying devel-
opers Tan et al. [260] found that self-removal of SATD is often a conscious
decision. Moreover, they found that more experienced developers are more
often concerned when it comes to the removal of SATD. However, none
of the studies on the removal of SATD focus on whether the presence of
negativity influences whether SATD is removed.

6.6.2 Sentiment in Software Engineering

Because this study focuses on the effect of sentiment on the prioritization
of SATD, we describe literature related to the role of sentiment in soft-
ware engineering. In general, sentiment analysis has been used to study a
wide variety of software engineering activities [149], such as live meeting
analysis [113] or to design and build recommender systems [151].

Different studies have tried to understand whether expressions of negative
sentiment are correlated with suboptimal development practices, such as
unresolved issues, design smells, or bugs. Valdez et al. [272] found that
unresolved issues in Jira tend to express more negative sentiment than closed
issues. Similarly, based on a study of issue reopenings Cheruvelil and da Silva
[56] finds that issues that have been reopened once or more than once

192 CHAPTER 6. SATD AND PRIORITIZATION

tend to have more comments expressing negative emotions. For commit
messages Huq et al. [117] reports that commits related to bug fixing express
more negative sentiment. While for code reviews Asri et al. [26] finds that
code reviews in which negative sentiment is expressed tend to take longer to
complete. Olsson et al. [196] find that some design smells cause developers
to feel negative emotions.

Wrt. positive sentiment, or the expression of positive emotions, Ortu et al.
[197] has found that more positive sentiment in the description appears to
correlate with a shorter issue resolution time. Similarly, Sanei et al. [228]
has studied the sentiment in issue comments, finding that more positive
comments correlate with faster resolution.

After studying questions on Stack Overflow Calefato et al. [45] reports that
successful questions on SO tend to be neutral, i.e., express no positive or
negative sentiment. Implying that neutral or more factual questions are
more likely to receive a quicker response.

The existing studies focus on the impact of sentiment on software engi-
neering through correlational analysis. However, the studies don’t focus on
causation (i.e., “did the expression of sentiment polarity cause the observed
effect?”). Through the controlled experiment reported in this study, we
further understand how negativity influences the perception of priority and
explain how expressions of negativity impact software development.

6.7 Conclusion

In this chapter, we report on a controlled experiment to study whether de-
velopers interpret negativity in self-admitted technical debt as a proxy for
priority. We exposed participants to instances of self-admitted technical
debt with or without negativity and asked them to estimate the priority
of each instance. By analyzing the prioritization scores of the experiments
using Bayesian statistics, we describe how negativity influences the percep-
tion of priority. Furthermore, to better describe the role negativity plays in
the management of self-admitted technical debt, we asked respondents a
series of questions about their perceptions towards the usage of negativity
in SATD.

Based on the participation of 59 experienced industrial software engineers,
we find that one-third to half of the developers are more likely to increase

6.7. CONCLUSION 193

their estimation of priority if negativity is used to describe the SATD.
Specifically, they’re between 1.5 and 2 times as likely to increase, as opposed
to decrease, their prioritization score if negativity is present. Secondly, we
confirm previous findings and conclude that two-thirds of developers believe
writing SATD in which negativity is expressed or interpreting negativity as
a proxy for priority is unacceptable. Nevertheless, our findings show that
even developers who believe the usage of negativity as a proxy for priority is
unacceptable draft SATD in which they express negativity and use negativity
to estimate priority.

Based on the experiment, we learn how developers use negativity in SATD
to communicate priority, in particular, we find that developers use negativity
as an additional dimension, in addition to descriptions of technical issues.
Furthermore, our results show why developers’ expression of negativity is
unavoidable and help explain the purpose of negative expressions. How-
ever, our results also show why using negativity to describe technical debt
might not be advisable because of both developers’ perceptions, and not all
developers are influenced by it.

194 CHAPTER 6. SATD AND PRIORITIZATION

Chapter 7
Conclusion

In this chapter, we summarize the key findings of the thesis, summarize the
studies conducted for each of the parts, and finally, discuss directions for
future research based on the findings of this thesis.

7.1 Findings
In this thesis, we make two major contributions to the field of software
engineering. These contributions are related to describing how software
engineers use negativity to communicate priority and how sentiment and
emotions should be studied.

Previous literature (Chapter 2) has found that expressions of negative emo-
tions or opinions correlate with specific outcomes. For instance, negativity
in a StackOverflow question reduces the chance of the question receiving
a successful answer [45]. However, it was previously unknown whether the
expressions of emotions cause the outcomes as mentioned earlier. In this
thesis (Chapters 5 and 6), we are the first to find how developers express
and interpret negative emotions as a signal indicating priority. We conclude
that developers increase priority scores when SATD is described using neg-
ative emotions. These findings show the role of emotions and sentiment in
software engineering, even in describing technical issues. Our thesis helps
explain how negative emotions and sentiment can inadvertently influence
decisions, even if developers believe this is unacceptable.

195

196 CHAPTER 7. CONCLUSION

The more methodological contribution of this work is guidance on how
sentiment and emotions should be studied in software engineering. We
show that while the performance of newly released deep-learning tools is
comparable to existing machine-learning tools, there are notable differences
in the types of text that these tools misclassify: Finetuned deep-learning
transformers are less likely to misclassify context-dependent texts, while
they are more likely to classify politeness as positive. These findings are
helpful for other researchers who want to select automated tools to classify
sentiment.

In addition to the key findings listed above, there are more findings specific
to each of the three parts of the thesis (Theory, Tools, and Practice) that
we discuss below.

7.1.1 Theory

In Chapter 2, we reported on a literature study of 185 primary studies that
apply opinion mining, including identifying sentiment and emotions, to study
software engineering. Many different software engineering activities have
been studied through the lens of sentiment and emotions, like bug-fixing,
continuous integration, and productivity. When emotions and sentiment are
studied extensively in software engineering, most studies relate performance
or behavior to emotions and sentiment.

The identified studies all use automated tools to classify emotions and sen-
timent, and we find that most of the classifiers and tools used have not
been designed specifically for an application to software engineering data.
This usage of less suitable tools results in a set of challenges that make it
impossible to understand the effects that emotions and sentiment consis-
tently have on software engineering. However, based on existing literature,
we describe a set of guidelines researchers can use to study emotions and
sentiment in software engineering using automated tools.

7.1.2 Tools

In Chapter 3, we studied the predictive performance of sentiment analysis
tools, while in Chapter 4, we studied how the differences between sentiment
analysis tools influence conclusions obtained by using the tools. In Chap-
ter 3, we found minor differences in predictive performance between the
best machine-learning and the best deep-learning sentiment analysis tools.

7.1. FINDINGS 197

However, in Chapter 4, we find differences in the types of text misclassified
by different sentiment analysis tools. In particular, we find BERT-based
transformers [298] are more likely to classify politeness as positive, while
Senti4SD [43] is more likely to misclassify shorter texts. Understanding the
types of text that individual tools are more likely to classify as positive or
negative helps researchers pick the right tools for the tasks, dependent on
their data and their operationalization of positivity and negativity. For in-
stance, if a particular study requires that politeness should be classified as
positive, then a BERT-based transformer might be the best choice.

Secondly, in Chapter 3, we also studied whether the presence of non-
natural language elements, such as code fragments, reduces predictive per-
formance. We find that, even if these non-natural language elements occur
frequently in software engineering texts, automatically replacing these el-
ements does not further improve the predictive performance of sentiment
analysis tools.

7.1.3 Practice
In Chapter 5 and Chapter 6, we studied whether, why, and how developers
express negativity in descriptions of technical debt. Through a combination
of a sample study, a survey, and an experiment, we find that developers
use negativity in source-code comments to communicate both the technical
issue and the priority of the issue through the expression of negativity.

In Chapter 5, we studied an existing dataset of self-admitted technical debt
instances. We found that based on the type of technical issues described
in the self-admitted technical debt, developers are more or less likely to use
negativity to describe the issues. In a survey of open-source developers,
25% say they express negativity when describing the technical issues they
believe are more important.

We further studied the link between priority and negativity in Chapter 6. In
an experimental study, we find that between one-third to half of developers,
conditional on their own perceptions, increase their estimations of priority
if a description of a technical issue expresses negativity.

7.1.4 Limitations
We have set out to study how emotions and sentiment affect software engi-
neering. However, our choice of studies and methods results in limitations

198 CHAPTER 7. CONCLUSION

that affect our ability to describe how emotions and sentiment affect soft-
ware engineering.

Firstly, there is a difference between developers experiencing emotions,
choosing to express them, and finally, the interpretation of these emotions
by other developers. A developer who does not experience any anger might
choose to express it to emphasize a point, or conversely, a developer who
experiences sadness might actively decide not to express it. This moder-
ation of emotions can be affected by many factors, such as social capital
within a team, culture, and personality [285, 104, 166]. In this thesis, we
study emotions that have already been expressed and describe how these
emotions affect software engineering. As a result, we cannot conclude any-
thing about how developers experience emotions or how emotions that have
been expressed might cause developers to experience emotions.

The second inherent limitation of this thesis is the focus on SATD as a case
to study how negativity affects prioritization. Of course, software engineer-
ing is much broader than just the prioritization of self-admitted technical
debt, and there are many different contexts and activities in which emotions
and opinions are studied, as we found in Chapter 2. Unfortunately, studying
how emotions and sentiment affect each activity is unfeasible. Therefore, we
have opted to focus on one of these activities and study it extensively.

The high methodological rigor allows us to at least partially mitigate these
limitations. In Chapter 6, the high level of internal validity allows us to
hypothesize that negativity affects the perception of priority of not only
SATD but also other software engineering artifacts. Secondly, we carefully
studied the tools used to classify emotions and sentiment, and combined
different research methods to study the role of negativity in the prioritization
of SATD. We hope that our methodological contributions in these chapters
inspire and enable future researchers who want to continue studying the
effect of emotions and sentiment in software engineering.

7.2 Future Research Directions
The work in this thesis studies software engineering through the lens of
sentiment and emotions and describes how sentiment and emotions affect
software engineering. However, where the work of this thesis ends, there
are opportunities for future research. In this section, we outline several of
them.

7.2. FUTURE RESEARCH DIRECTIONS 199

7.2.1 On Sentiment and Emotions

The findings in Chapters 5 and 6 highlight the importance of studying how
developers use emotions to communicate. Even if developers don’t realize
it themselves, they appear to be influenced by expressions of negativity,
particularly when estimating effort. However, the research of Chapters 5
and 6 raises a series of follow-up questions.

We believe that one of the most important next steps is understanding how
the theory and tools that have been studied can be used to enact change
in software engineering. In Chapters 5 and 6, we show that developers find
expressions of negativity in SATD unacceptable. However, based on this
work we cannot conclude how developers think negativity in SATD should
be addressed. Is it the case that developers want sentiment analysis tools to
integrate in their workflow to warn them when they are expressing negativity
in SATD? Or does integrating sentiment analysis tools in the workflow in-
crease information overload and make decision-making more difficult [211]?
Much is currently unknown about how the findings of this thesis can be used
to affect software engineering, and this can be studied from many different
perspectives: Technical feasibility, developer preference, and ability to enact
change.

Our findings in Chapters 5 and 6 show that negativity increases the percep-
tions of effort for developers and can also be used to explain the findings
of previous studies. It has been repeatedly found that negativity correlates
with specific outcomes. For instance, issues where negativity is expressed,
are resolved less quickly [272], and negative questions on Stack Overflow
are less likely to receive a successful answer [45]. One possible explanation
for these findings is the effect of negativity on the perception of effort. i.e.,
is it the case that developers think a question or issue in which negativ-
ity is expressed takes more effort to address and that, therefore, they are
less likely to work on it? However, the explanation might also be reversed:
What if difficult questions or issues are more likely to contain expressions of
negativity? Studying how negativity causes these effects and in what “di-
rection” negativity works helps describe how developers communicate and
the role played by emotions and sentiment.

In Chapters 3 and 4, we studied the sentiment analysis tools often used
to classify sentiment. As we have found in Chapter 4, different tools mis-

200 CHAPTER 7. CONCLUSION

classify different types of text, which could affect the conclusions obtained
when using these tools. As new sentiment analysis tools, and especially
new types of sentiment analysis tools, continue to emerge [297], it is im-
portant to study more than just the predictive performance of these tools.
We should also understand whether new tools have any systematic bias in
their misclassifications and whether these biases might influence conclusions
obtained when these new tools are used.

7.2.2 On Human Aspects in Software Engineering

In the introduction of this thesis, we re-iterated the collaborative and so-
ciotechnical nature of software engineering. Software engineering is a pro-
fession performed by humans who create software systems that are vital
to society. Therefore, we believe it is important to continue studying the
human experiences of software engineers and the challenges they face to
improve the state of the practice.

The work in Chapters 5 and 6 on self-admitted technical debt focuses on
the perspectives of individuals estimating the priority of SATD. A large
proportion of the work in software engineering that studies human aspects
focuses on the perspective of the individual [143]. However, modern soft-
ware engineering is more than just choices made by individuals. Because
of its collaborative nature, developers often work in teams, and therefore,
understanding software engineers’ behavior is not just a matter of studying
the behavior of individuals. Going forward, more effort should be made to
study software teams as the unit of analysis, as studying teams is an oppor-
tunity to understand further how social challenges affect software engineers
in practice.

Software development is rapidly changing because of the emergence of gen-
erative AI. The ability of generative AI to generate code, documentation,
and text all influence how software engineers work. Understanding how
generative AI affects software engineering is important, particularly how
this technology affects the way software engineers collaborate or the social
challenges they face. As software engineering researchers, it is up to us
to understand how these technologies influence software engineering. This
includes focussing on more than how software engineering is enabled but
also on how the emergence of new technologies might reverse recent ad-
vancements [254].

7.2. FUTURE RESEARCH DIRECTIONS 201

7.2.3 On Methodological Novelty
The third direction for future research is improving the methods we use to
study software engineering.

In recent years, several scientific disciplines have been subject to a so-called
“replication crisis” [59]. One characteristic of the replication crisis is the
fact that there are many replications, 36% of the studies in psychology, for
instance [59], not confirming significant (p < 0.05) results. The inherent
properties of frequentist statistics might contribute to the replication cri-
sis. Conventions, such as the point estimates of hypothesis tests and the
often fixed cut-off to assess significance, result in binary outcomes where
significant results matter and non-significant results are more challenging
to publish [60].

Some of the disadvantages of frequentist statistics can be mitigated through
the usage of Bayesian statistics [172]. Unlike frequentist approaches, Bayesian
statistics provide a probabilistic framework that incorporates prior knowledge
and updates the probability of a hypothesis as new data becomes available.
Using Bayesian data analysis has several advantages, like allowing for a more
nuanced interpretation of data and avoiding the binary significance/non-
significance outcomes [172]. In this thesis, we have used Bayesian data
analysis to analyze the results for the experiments conducted in Chapter 6,
and in software engineering in general, researchers are starting to adopt
Bayesian statistics because of these advantages [101, 92, 93, 266]. How-
ever, there are still open questions on how to apply Bayesian data analysis
to software engineering data, especially on how to analyze data collected
by mining software repositories. Answering these questions could further
help the field of empirical software engineering to derive more reliable find-
ings.

202 CHAPTER 7. CONCLUSION

Bibliography

[1] [n. d.]. ACM Digital Library. https://dl.acm.org/.

[2] [n. d.]. Aylien. https://aylien.com.

[3] [n. d.]. Elsevier ScienceDirect. https://www.sciencedirect.com/.

[4] [n. d.]. IEEE Xplore Digital Library. https://ieeexplore.ieee.org/.

[5] [n. d.]. Introduction to the Syuzhet Package. https://cran.r-project.org/web/
packages/syuzhet/vignettes/syuzhet-vignette.html.

[6] [n. d.]. LIWC2015. https://liwc.wpengine.com.

[7] [n. d.]. Microsoft Azure Text Analytics. https://azure.microsoft.com/en-us/
services/cognitive-services/text-analytics/.

[8] [n. d.]. Rosette Sentiment Analyzer. https://www.rosette.com/capability/
sentiment-analyzer/.

[9] [n. d.]. Scopus. https://www.scopus.com/.

[10] [n. d.]. SentiSE. https://github.com/amiangshu/SentiSE.

[11] [n. d.]. Springer Link Online Library. https://link.springer.com/.

[12] [n. d.]. TextBlob: Simplified Text Processing. https://textblob.readthedocs.
io/.

[13] [n. d.]. Watson Natural Language Understanding. https://www.ibm.com/cloud/
watson-natural-language-understanding.

[14] [n. d.]. Wiley Online Library. https://onlinelibrary.wiley.com/.

203

https://dl.acm.org/
https://aylien.com
https://www.sciencedirect.com/
https://ieeexplore.ieee.org/
https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html
https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html
https://liwc.wpengine.com
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://www.rosette.com/capability/sentiment-analyzer/
https://www.rosette.com/capability/sentiment-analyzer/
https://www.scopus.com/
https://github.com/amiangshu/SentiSE
https://link.springer.com/
https://textblob.readthedocs.io/
https://textblob.readthedocs.io/
https://www.ibm.com/cloud/watson-natural-language-understanding
https://www.ibm.com/cloud/watson-natural-language-understanding
https://onlinelibrary.wiley.com/

204 BIBLIOGRAPHY

[15] 2017. ISO/IEC/IEEE International Standard - Systems and software engineering –
Software life cycle processes. ISO/IEC/IEEE 12207:2017(E) First edition 2017-11
(2017), 1–157. https://doi.org/10.1109/IEEESTD.2017.8100771

[16] Herman Aguinis and Kyle J. Bradley. 2014. Best Practice Recommendations for
Designing and Implementing Experimental Vignette Methodology Studies. Organi-
zational Research Methods 17, 4 (2014), 351–371. https://doi.org/10.1177/
1094428114547952 arXiv:https://doi.org/10.1177/1094428114547952

[17] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. 2017.
SentiCR: A customized sentiment analysis tool for code review interactions. ASE
2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (2017), 106–111. https://doi.org/10.1109/ASE.2017.
8115623

[18] Reem Alfayez, Yunyan Ding, Robert Winn, Ghaida Alfayez, Christopher Harman,
and Barry Boehm. 2023. What is asked about technical debt (TD) on Stack Ex-
change question-and-answer (Q&A) websites? An observational study. Empiri-
cal Software Engineering 28, 2 (28 Jan 2023), 35. https://doi.org/10.1007/
s10664-022-10269-5

[19] Asma Musabah Alkalbani, Ahmed Mohammed Ghamry, Farookh Khadeer Hussain,
and Omar Khadeer Hussain. 2016. Sentiment Analysis and Classification for Software
as a Service Reviews. In 2016 IEEE 30th International Conference on Advanced Infor-
mation Networking and Applications (AINA). IEEE Computer Society, Los Alamitos,
CA, USA, 53–58. https://doi.org/10.1109/AINA.2016.148

[20] Nicolli S. R. Alves, Leilane Ferreira Ribeiro, Vivyane Caires, Thiago Souto Mendes,
and Rodrigo O. Spínola. 2014. Sixth International Workshop on Managing Technical
Debt, MTD@ICSME 2014, Victoria, BC, Canada, September 30, 2014. In Interna-
tional Workshop on Managing Technical Debt. IEEE Computer Society, 1–7.

[21] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris
Avgeriou. 2015. The financial aspect of managing technical debt: A systematic
literature review. Information and Software Technology 64 (8 2015), 52–73. https:
//doi.org/10.1016/j.infsof.2015.04.001

[22] Sareeta Amrute. 2017. Press one for POTUS, two for the German chancellor: Humor,
race, and rematerialization in the Indian tech diaspora. HAU: Journal of Ethnographic
Theory 7, 1 (2017), 327–352. https://doi.org/10.14318/hau7.1.023

[23] Marti J. Anderson. 2017. Permutational Multivariate Anal-
ysis of Variance (PERMANOVA). American Cancer Society,
1–15. https://doi.org/10.1002/9781118445112.stat07841
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07841

[24] Jorge Aranda and Gina Venolia. 2009. The secret life of bugs: Going past the errors
and omissions in software repositories. 2009 IEEE 31st International Conference on
Software Engineering, 298–308. https://doi.org/10.1109/ICSE.2009.5070530

https://doi.org/10.1109/IEEESTD.2017.8100771
https://doi.org/10.1177/1094428114547952
https://doi.org/10.1177/1094428114547952
https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.1007/s10664-022-10269-5
https://doi.org/10.1007/s10664-022-10269-5
https://doi.org/10.1109/AINA.2016.148
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.14318/hau7.1.023
https://doi.org/10.1002/9781118445112.stat07841
https://doi.org/10.1109/ICSE.2009.5070530

BIBLIOGRAPHY 205

[25] Neal M. Ashkanasy. 2004. Emotion and Performance. Human Performance 17 (4
2004), 137–144. Issue 2. https://doi.org/10.1207/s15327043hup1702_1

[26] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and M. A. Janati
Idrissi. 2019. An empirical study of sentiments in code reviews. Information and
Software Technology 114 (2019), 37–54. Issue October 2018. https://doi.org/
10.1016/j.infsof.2019.06.005

[27] Issa Atoum. 2020. A novel framework for measuring software quality-in-use based on
semantic similarity and sentiment analysis of software reviews. Journal of King Saud
University - Computer and Information Sciences 32, 1 (2020), 113 – 125. https:
//doi.org/10.1016/j.jksuci.2018.04.012

[28] Christiane Atzmüller and Peter M. Steiner. 2010. Experimental Vignette Studies in
Survey Research. Methodology 6, 3 (2010), 128–138. https://doi.org/10.1027/
1614-2241/a000014 arXiv:https://doi.org/10.1027/1614-2241/a000014

[29] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. 2010. Extracting Source
Code from E-Mails. In Proceedings of the 2010 IEEE 18th International Conference on
Program Comprehension (ICPC ’10). IEEE Computer Society, USA, 24–33. https:
//doi.org/10.1109/ICPC.2010.47

[30] Stewart Barr. 2006. Environmental Action in the Home: Investigating the ‘Value-
Action’ Gap. Geography 91 (3 2006), 43–54. Issue 1. https://doi.org/10.1080/
00167487.2006.12094149

[31] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are devel-
opers talking about? An analysis of topics and trends in Stack Overflow. Empirical
Software Engineering 19, 3 (01 Jun 2014), 619–654. https://doi.org/10.1007/
s10664-012-9231-y

[32] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-
admitted technical debt. In International Conference on Mining Software Repositories,
Miryung Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 315–326.

[33] Christos Baziotis, Athanasiou Nikolaos, Alexandra Chronopoulou, Athanasia
Kolovou, Georgios Paraskevopoulos, Nikolaos Ellinas, Shrikanth S. Narayanan, and
Alexandros Potamianos. 2018. NTUA-SLP at SemEval-2018 Task 1: Predicting Affec-
tive Content in Tweets with Deep Attentive RNNs and Transfer Learning. In Proceed-
ings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 5-6, 2018. Association for Computa-
tional Linguistics, 245–255. https://doi.org/10.18653/v1/s18-1037

[34] Victoria Bellotti, Brinda Dalal, Nathaniel Good, Peter Flynn, Daniel G. Bobrow,
and Nicolas Ducheneaut. 2004. What a to-do: studies of task management towards
the design of a personal task list manager. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 735–742. https://doi.org/10.1145/
985692.985785

https://doi.org/10.1207/s15327043hup1702_1
https://doi.org/10.1016/j.infsof.2019.06.005
https://doi.org/10.1016/j.infsof.2019.06.005
https://doi.org/10.1016/j.jksuci.2018.04.012
https://doi.org/10.1016/j.jksuci.2018.04.012
https://doi.org/10.1027/1614-2241/a000014
https://doi.org/10.1027/1614-2241/a000014
https://doi.org/10.1109/ICPC.2010.47
https://doi.org/10.1109/ICPC.2010.47
https://doi.org/10.1080/00167487.2006.12094149
https://doi.org/10.1080/00167487.2006.12094149
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.18653/v1/s18-1037
https://doi.org/10.1145/985692.985785
https://doi.org/10.1145/985692.985785

206 BIBLIOGRAPHY

[35] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society Series B (Methodological) 57, 1 (1995), 289–300. https://doi.org/10.
2307/2346101

[36] Terese Besker, Hadi Ghanbari, Antonio Martini, and Jan Bosch. 2020. The influence
of Technical Debt on software developer morale. Journal of Systems and Software
167 (2020), 110586. https://doi.org/10.1016/j.jss.2020.110586

[37] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[38] Eeshita Biswas, Mehmet Efruz Karabulut, Lori Pollock, and K. Vijay-Shanker. 2020.
Achieving Reliable Sentiment Analysis in the Software Engineering Domain using
BERT. Proceedings - 2020 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2020 (2020), 162–173. https://doi.org/10.1109/
ICSME46990.2020.00025

[39] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.
the Journal of machine Learning research 3 (2003), 993–1022.

[40] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Charac-
teristics of Useful Code Reviews: An Empirical Study at Microsoft. In
Proceedings of the International Conference on Mining Software Repos-
itories. https://www.microsoft.com/en-us/research/publication/
characteristics-of-useful-code-reviews-an-empirical-study-at-microsoft/

[41] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert L. Nord, Ipek Ozkaya, Raghvinder S.
Sangwan, Carolyn B. Seaman, Kevin J. Sullivan, and Nico Zazworka. 2010. Man-
aging technical debt in software-reliant systems. In Proceedings of the Workshop on
Future of Software Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2010, Santa Fe,
NM, USA, November 7-11, 2010, Gruia-Catalin Roman and Kevin J. Sullivan (Eds.).
ACM, 47–52.

[42] Luis Adrián Cabrera-Diego, Nik Bessis, and Ioannis Korkontzelos. 2020. Classifying
emotions in Stack Overflow and JIRA using a multi-label approach. Knowledge-Based
Systems 195 (2020), 105633. https://doi.org/10.1016/j.knosys.2020.105633

[43] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. 2018. Sen-
timent Polarity Detection for Software Development. Empirical Software Engineering
23, 3 (2018), 1352–1382. https://doi.org/10.1007/s10664-017-9546-9

[44] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2017. EmoTxt: A toolkit for
emotion recognition from text. In Proceedings of the 7th International Conference on
Affective Computing and Intelligent Interaction Workshops and Demos (ACII 2017).
IEEE Computer Society, 79–80. https://doi.org/10.1109/ACIIW.2017.8272591

https://doi.org/10.2307/2346101
https://doi.org/10.2307/2346101
https://doi.org/10.1016/j.jss.2020.110586
https://doi.org/10.1109/ICSME46990.2020.00025
https://doi.org/10.1109/ICSME46990.2020.00025
https://www.microsoft.com/en-us/research/publication/characteristics-of-useful-code-reviews-an-empirical-study-at-microsoft/
https://www.microsoft.com/en-us/research/publication/characteristics-of-useful-code-reviews-an-empirical-study-at-microsoft/
https://doi.org/10.1016/j.knosys.2020.105633
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1109/ACIIW.2017.8272591

BIBLIOGRAPHY 207

[45] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2018. How to ask for technical
help? Evidence-based guidelines for writing questions on Stack Overflow. Information
and Software Technology 94 (2018), 186–207. Issue September 2017. https://doi.
org/10.1016/j.infsof.2017.10.009

[46] Jeffrey C. Carver, Natalia Juristo, Maria Teresa Baldassarre, and Sira Vegas. 2014.
Replications of software engineering experiments. Empirical Software Engineering 19,
2 (01 Apr 2014), 267–276. https://doi.org/10.1007/s10664-013-9290-8

[47] Luis Vicente Casaló, Carlos Flavián, Miguel Guinaliu, and Yuksel Ekinci. 2015. Avoid-
ing the dark side of positive online consumer reviews: Enhancing reviews’ usefulness
for high risk-averse travelers. Journal of Business Research 68 (2015), 1829–1835.

[48] Nathan Cassee, Andrei Agaronian, Eleni Constantinou, Nicole Novielli, and Alexan-
der Serebrenik. 2024. Transformers and meta-tokenization in sentiment analysis for
software engineering. Empirical Software Engineering 29 (7 2024), 77. Issue 4.
https://doi.org/10.1007/s10664-024-10468-2

[49] Nathan Cassee, Christos Kitsanelis, Eleni Constantinou, and Alexander Serebrenik.
2021. Human, bot or both? A study on the capabilities of classification models
on mixed accounts. 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 654–658. https://doi.org/10.1109/ICSME52107.2021.
00075

[50] Nathan Cassee and Alexander Serebrenik. 2021. Koester de ontwikkelaar. AG Con-
nect 2021, december (1 Dec. 2021), 69–71.

[51] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. 2020. The Silent
Helper: The Impact of Continuous Integration on Code Reviews. 2020 IEEE 27th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
423–434. https://doi.org/10.1109/SANER48275.2020.9054818

[52] Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander Serebrenik, and Mas-
similiano Di Penta. 2022. Self-Admitted Technical Debt and comments’ polar-
ity: an empirical study. Empirical Software Engineering 27, 6 (11 2022), 139–xx.
https://doi.org/10.1007/s10664-022-10183-w

[53] Preetha Chatterjee, Kostadin Damevski, and Lori Pollock. 2021. Automatic extrac-
tion of opinion-based Q&A from online developer chats. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1260–1272.

[54] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang. 2014.
AR-miner: Mining Informative Reviews for Developers from Mobile App Marketplace.
In Proceedings of the 36th International Conference on Software Engineering (ICSE
2014) (Hyderabad, India). 767–778.

[55] Zhenpeng Chen, Yanbin Cao, Xuan Lu, Qiaozhu Mei, and Xuanzhe Liu. 2019.
SEntiMoji: An Emoji-Powered Learning Approach for Sentiment Analysis in Soft-
ware Engineering. In Proceedings of the 27th edition of ESEC/FSE (Tallinn, Esto-
nia) (ESEC/FSE 2019). Association for Computing Machinery, 841–852. https:
//doi.org/10.1145/3338906.3338977

https://doi.org/10.1016/j.infsof.2017.10.009
https://doi.org/10.1016/j.infsof.2017.10.009
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1007/s10664-024-10468-2
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/ICSME52107.2021.00075
https://doi.org/10.1109/SANER48275.2020.9054818
https://doi.org/10.1007/s10664-022-10183-w
https://doi.org/10.1145/3338906.3338977
https://doi.org/10.1145/3338906.3338977

208 BIBLIOGRAPHY

[56] Jonathan Cheruvelil and Bruno C. da Silva. 2019. Developers’ Sentiment and Issue
Reopening. 2019 IEEE/ACM 4th International Workshop on Emotion Awareness in
Software Engineering (SEmotion), 29–33. https://doi.org/10.1109/SEmotion.
2019.00013

[57] Boreum Choi, Kira Alexander, Robert E. Kraut, and John M. Levine. 2010. So-
cialization Tactics in Wikipedia and Their Effects. In Proceedings of the 2010 ACM
Conference on Computer Supported Cooperative Work (Savannah, Georgia, USA)
(CSCW ’10). Association for Computing Machinery, New York, NY, USA, 107–116.
https://doi.org/10.1145/1718918.1718940

[58] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provision for scaled
disagreement or partial credit. , 213–220 pages. https://doi.org/10.1037/
h0026256

[59] Open Science Collaboration. 2015. Estimating the reproducibility of psychological
science. Science 349 (8 2015). Issue 6251. https://doi.org/10.1126/science.
aac4716

[60] Lincoln J. Colling and Dénes Szűcs. 2021. Statistical Inference and the Replication
Crisis. Review of Philosophy and Psychology 12 (3 2021), 121–147. Issue 1. https:
//doi.org/10.1007/s13164-018-0421-4

[61] Jack G. Conrad and Frank Schilder. 2007. Opinion mining in legal blogs. In Proceed-
ings of the 11th International Conference on Artificial Intelligence and Law (ICAIL
2007). ACM, 231–236. https://doi.org/10.1145/1276318.1276363

[62] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[63] Ward Cunningham. 1992. The WyCash Portfolio Management System. SIGPLAN
OOPS Mess. 4, 2 (dec 1992), 29–30. https://doi.org/10.1145/157710.157715

[64] Everton da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander Sere-
brenik. 2017. An Empirical Study on the Removal of Self-Admitted Technical Debt.
In ICSME. 238–248.

[65] Everton da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying dif-
ferent types of self-admitted technical Debt. In MTD. 9–15.

[66] Everton da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying dif-
ferent types of self-admitted technical Debt. In 7th IEEE International Workshop on
Managing Technical Debt, MTD@ICSME 2015, Bremen, Germany, October 2, 2015.
9–15.

[67] Everton da S. Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using Natural
Language Processing to Automatically Detect Self-Admitted Technical Debt. IEEE
Trans. Software Eng. 43, 11 (2017), 1044–1062.

https://doi.org/10.1109/SEmotion.2019.00013
https://doi.org/10.1109/SEmotion.2019.00013
https://doi.org/10.1145/1718918.1718940
https://doi.org/10.1037/h0026256
https://doi.org/10.1037/h0026256
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1007/s13164-018-0421-4
https://doi.org/10.1007/s13164-018-0421-4
https://doi.org/10.1145/1276318.1276363
https://doi.org/10.1145/157710.157715

BIBLIOGRAPHY 209

[68] Fabio Q. B. da Silva, Marcos Suassuna, A. César C. França, Alicia M. Grubb, Ta-
tiana B. Gouveia, Cleviton V. F. Monteiro, and Igor Ebrahim dos Santos. 2014.
Replication of empirical studies in software engineering research: a systematic
mapping study. Empirical Software Engineering 19, 3 (01 Jun 2014), 501–557.
https://doi.org/10.1007/s10664-012-9227-7

[69] Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure Leskovec, and
Christopher Potts. 2013. A computational approach to politeness with application
to social factors. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1:
Long Papers. The Association for Computer Linguistics, 250–259. https://www.
aclweb.org/anthology/P13-1025/

[70] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.
2021. Do you Really Code? Designing and Evaluating Screening Questions for On-
line Surveys with Programmers. 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 537–548. https://doi.org/10.1109/ICSE43902.
2021.00057

[71] Kushal Dave, Steve Lawrence, and David M. Pennock. 2003. Mining the peanut
gallery: opinion extraction and semantic classification of product reviews. In Proceed-
ings of the Twelfth International World Wide Web Conference (WWW 2003). ACM,
519–528. https://doi.org/10.1145/775152.775226

[72] Rahim Dehkharghani and Cemal Yilmaz. 2013. Automatically identifying a software
product’s quality attributes through sentiment analysis of tweets. In Proceedings of
the 1st International Workshop on Natural Language Analysis in Software Engineer-
ing (NaturaLiSE 2013). 25–30. https://doi.org/10.1109/NAturaLiSE.2013.
6611717

[73] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[74] James Diefendorff and Erin Richard. 2003. Antecedents and Consequences of Emo-
tional Display Rule Perceptions. The Journal of applied psychology 88 (05 2003),
284–94. https://doi.org/10.1037/0021-9010.88.2.284

[75] James M. Diefendorff, Meredith H. Croyle, and Robin H. Gosserand. 2005. The
dimensionality and antecedents of emotional labor strategies. Journal of Vocational
Behavior 66 (4 2005), 339–357. Issue 2. https://doi.org/10.1016/j.jvb.2004.
02.001

[76] Jin Ding, Hailong Sun, Xu Wang, and Xudong Liu. 2018. Entity-level sentiment
analysis of issue comments. (2018), 7–13. https://doi.org/10.1145/3194932.
3194935

https://doi.org/10.1007/s10664-012-9227-7
https://www.aclweb.org/anthology/P13-1025/
https://www.aclweb.org/anthology/P13-1025/
https://doi.org/10.1109/ICSE43902.2021.00057
https://doi.org/10.1109/ICSE43902.2021.00057
https://doi.org/10.1145/775152.775226
https://doi.org/10.1109/NAturaLiSE.2013.6611717
https://doi.org/10.1109/NAturaLiSE.2013.6611717
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1037/0021-9010.88.2.284
https://doi.org/10.1016/j.jvb.2004.02.001
https://doi.org/10.1016/j.jvb.2004.02.001
https://doi.org/10.1145/3194932.3194935
https://doi.org/10.1145/3194932.3194935

210 BIBLIOGRAPHY

[77] Alexis Dinno. 2015. Nonparametric Pairwise Multiple Comparisons in Indepen-
dent Groups using Dunn’s Test. The Stata Journal: Promoting communications
on statistics and Stata 15 (4 2015), 292–300. Issue 1. https://doi.org/10.1177/
1536867X1501500117

[78] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2018.
Communicative intention in code review questions. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE, 519–523.

[79] Joshua Aldrich Edbert, Sahrima Jannat Oishwee, Shubhashis Karmakar, Zadia Cod-
abux, and Roberto Verdecchia. 2023. Exploring Technical Debt in Security Questions
on Stack Overflow. In ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2023, New Orleans, LA, USA, October 26-27,
2023. IEEE, 1–12. https://doi.org/10.1109/ESEM56168.2023.10304868

[80] Vasiliki Efstathiou and Diomidis Spinellis. 2018. Code Review Comments: Language
Matters. In ICSE NIER. ACM, 69–72.

[81] Paul Ekman. 1999. Basic Emotions. , 45-60 pages. https://doi.org/10.1002/
0470013494.ch3

[82] Felix Elwert. 2013. Graphical Causal Models. , 245-273 pages. https://doi.org/
10.1007/978-94-007-6094-3_13

[83] Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton.
2015. Measure it? manage it? ignore it? software practitioners and technical debt.
In Foundations of Software Engineering. ACM, 50–60.

[84] Beverley Fehr and James A. Russell. 1984. Concept of emotion viewed from a
prototype perspective. Journal of Experimental Psychology: General 113 (9 1984),
464–486. Issue 3. https://doi.org/10.1037/0096-3445.113.3.464

[85] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann.
2017. Using millions of emoji occurrences to learn any-domain representations for
detecting sentiment, emotion and sarcasm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, Martha Palmer, Rebecca Hwa,
and Sebastian Riedel (Eds.). Association for Computational Linguistics, Copenhagen,
Denmark, 1615–1625. https://doi.org/10.18653/v1/D17-1169

[86] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a release history
database from version control and bug tracking systems. In Software Maintenance,
2003. ICSM 2003. Proceedings. International Conference on. IEEE.

[87] Beat Fluri, Michael Wursch, and Harald C Gall. 2007. Do code and comments co-
evolve? on the relation between source code and comment changes. In 14th Working
Conference on Reverse Engineering (WCRE 2007). IEEE, 70–79.

[88] Julian Frattini, Davide Fucci, Richard Torkar, Lloyd Montgomery, Michael Un-
terkalmsteiner, Jannik Fischbach, and Daniel Mendez. 2024. Applying Bayesian Data
Analysis for Causal Inference about Requirements Quality: A Replicated Experiment.
arXiv:2401.01154 [cs.SE]

https://doi.org/10.1177/1536867X1501500117
https://doi.org/10.1177/1536867X1501500117
https://doi.org/10.1109/ESEM56168.2023.10304868
https://doi.org/10.1002/0470013494.ch3
https://doi.org/10.1002/0470013494.ch3
https://doi.org/10.1007/978-94-007-6094-3_13
https://doi.org/10.1007/978-94-007-6094-3_13
https://doi.org/10.1037/0096-3445.113.3.464
https://doi.org/10.18653/v1/D17-1169

BIBLIOGRAPHY 211

[89] Wei Fu and Tim Menzies. 2017. Easy over hard: a case study on deep learning.
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
49–60. https://doi.org/10.1145/3106237.3106256

[90] Gianmarco Fucci, Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander Sere-
brenik, and Massimiliano Di Penta. 2021. Waiting around or job half-done? Sentiment
in self-admitted technical debt. In IEEE/ACM 18th International Conference on Min-
ing Software Repositories. IEEE, 403–414. https://doi.org/10.1109/MSR52588.
2021.00052

[91] Gianmarco Fucci, Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di
Penta. 2020. Who (self) admits technical debt?. In 2020 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE, 672–676.

[92] Carlo A. Furia, Richard Torkar, and Robert Feldt. 2022. Applying Bayesian Analysis
Guidelines to Empirical Software Engineering Data: The Case of Programming Lan-
guages and Code Quality. ACM Transactions on Software Engineering and Method-
ology 31 (7 2022), 1–38. Issue 3. https://doi.org/10.1145/3490953

[93] Carlo A. Furia, Richard Torkar, and Robert Feldt. 2023. Towards Causal Analysis
of Empirical Software Engineering Data: The Impact of Programming Languages on
Coding Competitions. ACM Transactions on Software Engineering and Methodology
1 (11 2023). Issue 1. https://doi.org/10.1145/3611667

[94] Daviti Gachechiladze, Filippo Lanubile, Nicole Novielli, and Alexander Serebrenik.
2017. Anger and Its Direction in Collaborative Software Development. In Proceedings
of the 39th International Conference on Software Engineering: New Ideas and Emerg-
ing Results Track (Buenos Aires, Argentina) (ICSE-NIER ’17). IEEE Press, 11–14.
https://doi.org/10.1109/ICSE-NIER.2017.18

[95] Eliakim Gama, Sávio Freire, Manoel Mendonça, Rodrigo O. Spínola, Matheus
Paixao, and Mariela I. Cortés. 2020. Using Stack Overflow to Assess Technical Debt
Identification on Software Projects. In Proceedings of the XXXIV Brazilian Sympo-
sium on Software Engineering (Natal, Brazil) (SBES ’20). Association for Computing
Machinery, New York, NY, USA, 730–739. https://doi.org/10.1145/3422392.
3422429

[96] Zhipeng Gao, Xin Xia, David Lo, John C. Grundy, and Thomas Zimmermann. 2021.
Automating the removal of obsolete TODO comments. In ESEC/FSE ’21: 29th ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, August 23-28, 2021. 218–229. https:
//doi.org/10.1145/3468264.3468553

[97] Carlos Gavidia-Calderon, Federica Sarro, Mark Harman, and Earl T. Barr. 2021.
The Assessor’s Dilemma: Improving Bug Repair via Empirical Game Theory. IEEE
Transactions on Software Engineering 47, 10 (2021), 2143–2161. https://doi.
org/10.1109/TSE.2019.2944608

https://doi.org/10.1145/3106237.3106256
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1145/3490953
https://doi.org/10.1145/3611667
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1145/3422392.3422429
https://doi.org/10.1145/3422392.3422429
https://doi.org/10.1145/3468264.3468553
https://doi.org/10.1145/3468264.3468553
https://doi.org/10.1109/TSE.2019.2944608
https://doi.org/10.1109/TSE.2019.2944608

212 BIBLIOGRAPHY

[98] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin. 2013. Bayesian Data Analysis. Chapman and Hall/CRC. https:
//doi.org/10.1201/b16018

[99] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpen-
ter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin
Modrák. 2020. Bayesian Workflow. http://arxiv.org/abs/2011.01808

[100] Necmiye Genc-Nayebi and Alain Abran. 2017. A systematic literature review: Opin-
ion mining studies from mobile app store user reviews. Journal of Systems and Soft-
ware 125 (2017), 207–219.

[101] Amir Ghorbani, Nathan Cassee, Derek Robinson, Adam Alami, Neil A. Ernst,
Alexander Serebrenik, and Andrzej Wąsowski. 2023. Autonomy Is An Acquired
Taste: Exploring Developer Preferences for GitHub Bots. 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 1405–1417. https:
//doi.org/10.1109/ICSE48619.2023.00123

[102] Daniela Girardi, Filippo Lanubile, Nicole Novielli, and Alexander Serebrenik. 2022.
Emotions and Perceived Productivity of Software Developers at the Workplace. IEEE
Transactions on Software Engineering 48 (9 2022), 3326–3341. Issue 9. https:
//doi.org/10.1109/TSE.2021.3087906

[103] Daniela Girardi, Nicole Novielli, Davide Fucci, and Filippo Lanubile. 2020. Rec-
ognizing Developers’ Emotions While Programming. In International Conference on
Software Engineering, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 666–677.

[104] Alicia A. Grandey. 2000. Emotional regulation in the workplace: A new way to
conceptualize emotional labor. Journal of Occupational Health Psychology 5 (1 2000),
95–110. Issue 1. https://doi.org/10.1037/1076-8998.5.1.95

[105] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.
2018. What happens when software developers are (un)happy. Journal of Systems
and Software 140 (2018), 32–47. https://doi.org/10.1016/j.jss.2018.02.041

[106] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. 2014. Happy software
developers solve problems better: psychological measurements in empirical software
engineering. PeerJ 2 (mar 2014), e289.

[107] Zhaoqiang Guo, Shiran Liu, Jinping Liu, Yanhui Li, Lin Chen, Hongmin Lu, and
Yuming Zhou. 2021. How Far Have We Progressed in Identifying Self-admitted Tech-
nical Debts? A Comprehensive Empirical Study. ACM Transactions on Software
Engineering and Methodology 30 (10 2021), 1–56. Issue 4. https://doi.org/10.
1145/3447247

[108] Emitza Guzman and Bernd Bruegge. 2013. Towards emotional awareness in
software development teams. In Proceedings of the Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2013). ACM, 671–674. https:
//doi.org/10.1145/2491411.2494578

https://doi.org/10.1201/b16018
https://doi.org/10.1201/b16018
http://arxiv.org/abs/2011.01808
https://doi.org/10.1109/ICSE48619.2023.00123
https://doi.org/10.1109/ICSE48619.2023.00123
https://doi.org/10.1109/TSE.2021.3087906
https://doi.org/10.1109/TSE.2021.3087906
https://doi.org/10.1037/1076-8998.5.1.95
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1145/3447247
https://doi.org/10.1145/3447247
https://doi.org/10.1145/2491411.2494578
https://doi.org/10.1145/2491411.2494578

BIBLIOGRAPHY 213

[109] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie van
Deursen. 2013. Communication in open source software development mailing lists.
2013 10th Working Conference on Mining Software Repositories (MSR), 277–286.
https://doi.org/10.1109/MSR.2013.6624039

[110] Gali Halevi, Henk Moed, and Judit Bar-Ilan. 2017. Suitability of Google Scholar
as a source of scientific information and as a source of data for scientific evaluation:
Review of the Literature. Journal of Informetrics 11, 3 (2017), 823–834. https:
//doi.org/10.1016/j.joi.2017.06.005

[111] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. Model Assessment
and Selection. Springer New York, New York, NY, 219–259. https://doi.org/
10.1007/978-0-387-84858-7_7

[112] Fatemeh Hemmatian and Mohammad Karim Sohrabi. 2019. A survey on classi-
fication techniques for opinion mining and sentiment analysis. Artificial Intelligence
Review 52, 3 (2019), 1495–1545. https://doi.org/10.1007/s10462-017-9599-6

[113] Marc Herrmann and Jil Klunder. 2021. From Textual to Verbal Communication:
Towards Applying Sentiment Analysis to a Software Project Meeting. 2021 IEEE
29th International Requirements Engineering Conference Workshops (REW), 371–
376. https://doi.org/10.1109/REW53955.2021.00065

[114] Russell Hochschild. 1983. The managed heart: Commercialization of human feeling.
The University of California Press.

[115] Ya-Han Hu, Yen-Liang Chen, and Hui-Ling Chou. 2017. Opinion mining from
online hotel reviews - A text summarization approach. Information Processing and
Management 53, 2 (2017), 436–449. https://doi.org/10.1016/j.ipm.2016.12.
002

[116] Jennifer L. Hughes, Abigail A. Camden, and Tenzin Yangchen. 2016. Rethinking
and Updating Demographic Questions: Guidance to Improve Descriptions of Research
Samples. Psi Chi Journal of Psychological Research 21 (2016), 138–151. Issue 3.
https://doi.org/10.24839/2164-8204.JN21.3.138

[117] Syed Fatiul Huq, Ali Zafar Sadiq, and Kazi Sakib. 2020. Is Developer Sentiment
Related to Software Bugs: An Exploratory Study on GitHub Commits. 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), 527–531. https://doi.org/10.1109/SANER48275.2020.9054801

[118] Clayton J. Hutto and Eric Gilbert. 2014. VADER: A Parsimonious Rule-Based
Model for Sentiment Analysis of Social Media Text. In Proceedings of the 8th Inter-
national Conference on Weblogs and Social Media (ICWSM 2014). The AAAI Press.
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109

[119] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile apps
feature requests from online reviews. In Proceedings of the 10th Working Confer-
ence on Mining Software Repositories (MSR 2013). IEEE Computer Society, 41–44.
https://doi.org/10.1109/MSR.2013.6624001

https://doi.org/10.1109/MSR.2013.6624039
https://doi.org/10.1016/j.joi.2017.06.005
https://doi.org/10.1016/j.joi.2017.06.005
https://doi.org/10.1007/978-0-387-84858-7_7
https://doi.org/10.1007/978-0-387-84858-7_7
https://doi.org/10.1007/s10462-017-9599-6
https://doi.org/10.1109/REW53955.2021.00065
https://doi.org/10.1016/j.ipm.2016.12.002
https://doi.org/10.1016/j.ipm.2016.12.002
https://doi.org/10.24839/2164-8204.JN21.3.138
https://doi.org/10.1109/SANER48275.2020.9054801
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109
https://doi.org/10.1109/MSR.2013.6624001

214 BIBLIOGRAPHY

[120] Md Rakibul Islam and Minhaz F. Zibran. 2018. SentiStrength-SE: Exploiting do-
main specificity for improved sentiment analysis in software engineering text. Journal
of Systems and Software 145 (2018), 125–146. https://doi.org/10.1016/j.jss.
2018.08.030

[121] Jarl Jansen, Nathan Cassee, and Alexander Serebrenik. 2024. Sentiment of Tech-
nical Debt Security Questions on Stack Overflow: A Replication Study. In 31st IEEE
International Conference on Software Analysis, Evolution and Reengineering. IEEE,
To appear.

[122] Marcia K. Johnson, Shahin Hashtroudi, and D. Stephen Lindsay. 1993. Source
monitoring. Psychological Bulletin 114 (1993), 3–28. Issue 1. https://doi.org/
10.1037/0033-2909.114.1.3

[123] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Serebrenik.
2017. On negative results when using sentiment analysis tools for software engineering
research. Empirical Software Engineering 22 (2017), 2543–2584. Issue 5. https:
//doi.org/10.1007/s10664-016-9493-x

[124] Natalia Juristo and Ana M. Moreno. 2001. Experiments with Undesired Variations.
, 203-234 pages. https://doi.org/10.1007/978-1-4757-3304-4_9

[125] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. 2007. A survey and
taxonomy of approaches for mining software repositories in the context of software
evolution. Journal of Software Maintenance and Evolution: Research and Practice
19 (3 2007), 77–131. Issue 2. https://doi.org/10.1002/smr.344

[126] Yasutaka Kamei, Everton da S Maldonado, Emad Shihab, and Naoyasu Ubayashi.
2016. Using Analytics to Quantify Interest of Self-Admitted Technical Debt. In Joint
Proceedings of the 4th International Workshop on Quantitative Approaches to Soft-
ware Quality (QuASoQ 2016) and 1st International Workshop on Technical Debt
Analytics (TDA 2016) co-located with the 23rd Asia-Pacific Software Engineering
Conference (APSEC 2016), Hamilton, New Zealand, December 6, 2016 (CEUR Work-
shop Proceedings, Vol. 1771), Horst Lichter, Konrad Fögen, Thanwadee Sunetnanta,
Toni Anwar, Aiko Yamashita, Leon Moonen, Tom Mens, Amjed Tahir, and Ashish
Sureka (Eds.). CEUR-WS.org, 68–71.

[127] Yutaro Kashiwa, Ryoma Nishikawa, Yasutaka Kamei, Masanari Kondo, Emad Shi-
hab, Ryosuke Sato, and Naoyasu Ubayashi. 2022. An empirical study on self-admitted
technical debt in modern code review. Information and Software Technology 146 (6
2022), 106855. https://doi.org/10.1016/j.infsof.2022.106855

[128] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing system-
atic literature reviews in software engineering. (2007).

[129] Gerben A. Van Kleef. 2009. How Emotions Regulate Social Life. Current Directions
in Psychological Science 18 (6 2009), 184–188. Issue 3. https://doi.org/10.1111/
j.1467-8721.2009.01633.x

https://doi.org/10.1016/j.jss.2018.08.030
https://doi.org/10.1016/j.jss.2018.08.030
https://doi.org/10.1037/0033-2909.114.1.3
https://doi.org/10.1037/0033-2909.114.1.3
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1007/978-1-4757-3304-4_9
https://doi.org/10.1002/smr.344
https://doi.org/10.1016/j.infsof.2022.106855
https://doi.org/10.1111/j.1467-8721.2009.01633.x
https://doi.org/10.1111/j.1467-8721.2009.01633.x

BIBLIOGRAPHY 215

[130] Frank Konietschke, Ludwig A. Hothorn, and Edgar Brunner. 2012. Rank-based
multiple test procedures and simultaneous confidence intervals. Electronic Journal of
Statistics 6 (2012), 738–759.

[131] Klaus Krippendorff. 2012. Content analysis: An introduction to its methodology.
Sage.

[132] Philippe Kruchten, Robert L Nord, Ipek Ozkaya, and Davide Falessi. 2013. Tech-
nical debt: towards a crisper definition report on the 4th international workshop on
managing technical debt. ACM SIGSOFT Software Engineering Notes (2013).

[133] John K. Kruschke and Torrin M. Liddell. 2018. The Bayesian New Statistics:
Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian
perspective. Psychonomic Bulletin & Review 25 (2 2018), 178–206. Issue 1. https:
//doi.org/10.3758/s13423-016-1221-4

[134] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621. https:
//doi.org/10.1080/01621459.1952.10483441

[135] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, 66–71. https://doi.org/10.18653/v1/D18-2012

[136] R. Kuhn, M. Raunak, and R. Kacker. 2018. Can Reducing Faults Prevent Vul-
nerabilities? Computer 51, 07 (jul 2018), 82–85. https://doi.org/10.1109/MC.
2018.3011039

[137] Antharasanahalli Venkataramaiah Mohan Kumar and Ambuga Narayanaiyengar
Nandkumar. 2020. A Survey on Challenges and Research Opportunities in Opin-
ion Mining. SN Computer Science 1, 3 (2020), 171. https://doi.org/10.1007/
s42979-020-00149-4

[138] Anang Kunaefi and Masayoshi Aritsugi. 2021. Extracting Arguments Based on User
Decisions in App Reviews. IEEE Access 9 (2021), 45078–45094.

[139] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for
static analysis of Java reflection: literature review and empirical study. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, Sebastián Uchitel, Alessandro Orso, and Martin P.
Robillard (Eds.). IEEE / ACM, 507–518. https://doi.org/10.1109/ICSE.2017.
53

[140] Marc J. Lanovaz and Bram Adams. 2019. Comparing the Communication Tone
and Responses of Users and Developers in Two R Mailing Lists: Measuring Positive
and Negative Emails. IEEE Software 36, 5 (2019), 46–50. https://doi.org/10.
1109/MS.2019.2922949

https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1109/MC.2018.3011039
https://doi.org/10.1109/MC.2018.3011039
https://doi.org/10.1007/s42979-020-00149-4
https://doi.org/10.1007/s42979-020-00149-4
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/MS.2019.2922949
https://doi.org/10.1109/MS.2019.2922949

216 BIBLIOGRAPHY

[141] Filippo Lanubile, Christof Ebert, Rafael Prikladnicki, and Aurora Vizcaíno. 2010.
Collaboration tools for global software engineering. IEEE software 27, 2 (2010), 52.

[142] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, and
Francesca Arcelli Fontana. 2021. A systematic literature review on Technical Debt pri-
oritization: Strategies, processes, factors, and tools. Journal of Systems and Software
171 (1 2021), 110827. https://doi.org/10.1016/j.jss.2020.110827

[143] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. 2015. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems and
Software 107 (9 2015), 15–37. https://doi.org/10.1016/j.jss.2015.04.084

[144] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (3
2015), 193–220. https://doi.org/10.1016/j.jss.2014.12.027

[145] Zuhe Li, Yangyu Fan, Bin Jiang, Tao Lei, and Weihua Liu. 2019. A survey on
sentiment analysis and opinion mining for social multimedia. Multim. Tools Appl. 78,
6 (2019), 6939–6967. https://doi.org/10.1007/s11042-018-6445-z

[146] Zexuan Li and Hao Zhong. 2021. An Empirical Study on Obsolete Issue Reports. In
Proceedings of the 36th IEEE/ACM International Conference on Automated Software
Engineering. page to appear.

[147] Erin Lim, Nitin Taksande, and Carolyn Seaman. 2012. A Balancing Act: What
Software Practitioners Have to Say about Technical Debt. IEEE Software 29 (11
2012), 22–27. Issue 6. https://doi.org/10.1109/MS.2012.130

[148] Bin Lin, Nathan Cassee, Alexander Serebrenik, Gabriele Bavota, Nicole Novielli,
and Michele Lanza. 2021. Replication Package for "Opinion Mining for Software De-
velopment: A Systematic Literature Review". https://doi.org/10.5281/zenodo.
5106305

[149] Bin Lin, Nathan Cassee, Alexander Serebrenik, Gabriele Bavota, Nicole Novielli,
and Michele Lanza. 2022. Opinion Mining for Software Development: A Systematic
Literature Review. ACM Transactions on Software Engineering and Methodology 31,
3 (7 2022), 1–41. https://doi.org/10.1145/3490388

[150] Bin Lin, Fiorella Zampetti, Gabriela Bavota, Max Di Penta, and Michele Lanza.
2019. Pattern-Based Mining of Opinions in Q & A Websites. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 548–559. https:
//doi.org/10.1109/ICSE.2019.00066

[151] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele Lanza,
and Rocco Oliveto. 2018. Sentiment analysis for software engineering: how far can
we go?. In Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica
Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 94–104. https://doi.
org/10.1145/3180155.3180195

https://doi.org/10.1016/j.jss.2020.110827
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1007/s11042-018-6445-z
https://doi.org/10.1109/MS.2012.130
https://doi.org/10.5281/zenodo.5106305
https://doi.org/10.5281/zenodo.5106305
https://doi.org/10.1145/3490388
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1145/3180155.3180195

BIBLIOGRAPHY 217

[152] Bing Liu. 2011. Opinion mining and sentiment analysis. In Web Data Mining.
Springer, 459–526.

[153] Bing Liu. 2011. Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data. Second Edition. Springer. https://doi.org/10.1007/978-3-642-19460-3

[154] Bing Liu. 2012. Sentiment Analysis and Opinion Mining. Synthesis Lectures on
Human Language Technologies 5 (5 2012), 1–167. Issue 1. https://doi.org/10.
2200/S00416ED1V01Y201204HLT016

[155] Bing Liu. 2015. Sentiment Analysis - Mining Opin-
ions, Sentiments, and Emotions. Cambridge University
Press. http://www.cambridge.org/us/academic/subjects/
computer-science/knowledge-management-databases-and-data-mining/
sentiment-analysis-mining-opinions-sentiments-and-emotions

[156] Bing Liu and Lei Zhang. 2012. A Survey of Opinion Mining and Sentiment Analysis.
In Mining Text Data, Charu C. Aggarwal and ChengXiang Zhai (Eds.). Springer, 415–
463. https://doi.org/10.1007/978-1-4614-3223-4_13

[157] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2021.
An exploratory study on the introduction and removal of different types of technical
debt in deep learning frameworks. Empir. Softw. Eng. 26, 2 (2021), 16. https:
//doi.org/10.1007/s10664-020-09917-5

[158] Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li.
2018. SATD detector: a text-mining-based self-admitted technical debt detection
tool. Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, 9–12. https://doi.org/10.1145/3183440.3183478

[159] Benedikt Lutz. 2009. Linguistic Challenges in Global Software Development:
Lessons Learned in an International SW Development Division. In 2009 Fourth
IEEE International Conference on Global Software Engineering. 249–253. https:
//doi.org/10.1109/ICGSE.2009.33

[160] Walid Maalej, Zijad Kurtanovic, Hadeer Nabil, and Christoph Stanik. 2016. On
the automatic classification of app reviews. Requirements Engineering 21, 3 (2016),
311–331. https://doi.org/10.1007/s00766-016-0251-9

[161] Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply
praise? On automatically classifying app reviews. In 2015 IEEE 23rd International
Requirements Engineering Conference (RE). 116–125. https://doi.org/10.1109/
RE.2015.7320414

[162] Rungroj Maipradit, Bin Lin, Csaba Nagy, Gabriele Bavota, Michele Lanza, Hideaki
Hata, and Kenichi Matsumoto. 2020. Automated Identification of On-hold Self-
admitted Technical Debt. In 2020 IEEE 20th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 54–64.

https://doi.org/10.1007/978-3-642-19460-3
https://doi.org/10.2200/S00416ED1V01Y201204HLT016
https://doi.org/10.2200/S00416ED1V01Y201204HLT016
http://www.cambridge.org/us/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/sentiment-analysis-mining-opinions-sentiments-and-emotions
http://www.cambridge.org/us/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/sentiment-analysis-mining-opinions-sentiments-and-emotions
http://www.cambridge.org/us/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/sentiment-analysis-mining-opinions-sentiments-and-emotions
https://doi.org/10.1007/978-1-4614-3223-4_13
https://doi.org/10.1007/s10664-020-09917-5
https://doi.org/10.1007/s10664-020-09917-5
https://doi.org/10.1145/3183440.3183478
https://doi.org/10.1109/ICGSE.2009.33
https://doi.org/10.1109/ICGSE.2009.33
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2015.7320414

218 BIBLIOGRAPHY

[163] Rungroj Maipradit, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2020.
Wait for it: identifying “On-Hold” self-admitted technical debt. Empirical Software
Engineering 25, 5 (2020), 3770–3798.

[164] Everton Da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander Sere-
brenik. 2017. An Empirical Study on the Removal of Self-Admitted Technical Debt.
2017 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), 238–248. https://doi.org/10.1109/ICSME.2017.8

[165] Everton Da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying
different types of self-admitted technical Debt. 2015 IEEE 7th International Workshop
on Managing Technical Debt, MTD 2015 - Proceedings (2015), 9–15. https:
//doi.org/10.1109/MTD.2015.7332619

[166] Sandi Mann. 2007. Expectations of emotional display in the workplace. Leadership
& Organization Development Journal 28 (9 2007), 552–570. Issue 6. https://doi.
org/10.1108/01437730710780985

[167] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit.. In ACL (System Demonstrations). The Association for Computer
Linguistics, 55–60.

[168] Mika Mäntylä, Bram Adams, Giuseppe Destefanis, Daniel Graziotin, and Marco
Ortu. 2016. Mining Valence, Arousal, and Dominance: Possibilities for Detecting
Burnout and Productivity?. In Proceedings of the 13th International Conference on
Mining Software Repositories (Austin, Texas) (MSR ’16). Association for Computing
Machinery, New York, NY, USA, 247–258. https://doi.org/10.1145/2901739.
2901752

[169] Mika Mäntylä, Fabio Calefato, and Maëlick Claes. 2018. Natural Language or
Not (NLoN) - A Package for Software Engineering Text Analysis Pipeline. In 2018
IEEE/ACM 15th International Conference on Mining Software Repositories (MSR).
387–391. https://doi.org/10.1145/3196398.3196444

[170] Mika V. Mäntylä, Daniel Graziotin, and Miikka Kuutila. 2018. The evolution
of sentiment analysis - A review of research topics, venues, and top cited papers.
Comput. Sci. Rev. 27 (2018), 16–32. https://doi.org/10.1016/j.cosrev.2017.
10.002

[171] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
2017. A survey of app store analysis for software engineering. IEEE transactions on
software engineering 43, 9 (2017), 817–847.

[172] Richard McElreath. 2018. Statistical Rethinking. Chapman and Hall/CRC. https:
//doi.org/10.1201/9781315372495

[173] Patrick E. McKnight and Julius Najab. 2010. Mann-Whitney U Test. John Wiley
& Sons, Ltd, 1–1. https://doi.org/10.1002/9780470479216.corpsy0524

https://doi.org/10.1109/ICSME.2017.8
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1108/01437730710780985
https://doi.org/10.1108/01437730710780985
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1145/3196398.3196444
https://doi.org/10.1016/j.cosrev.2017.10.002
https://doi.org/10.1016/j.cosrev.2017.10.002
https://doi.org/10.1201/9781315372495
https://doi.org/10.1201/9781315372495
https://doi.org/10.1002/9780470479216.corpsy0524

BIBLIOGRAPHY 219

[174] Andrew McNamara, Justin Smith, and Emerson Murphy-Hill. 2018. Does ACM’s
Code of Ethics Change Ethical Decision Making in Software Development?. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Lake Buena
Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York,
NY, USA, 729–733. https://doi.org/10.1145/3236024.3264833

[175] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. 2014. Sentiment analysis al-
gorithms and applications: A survey. Ain Shams Engineering Journal 5, 4 (2014),
1093–1113. https://doi.org/10.1016/j.asej.2014.04.011

[176] Hendrik Meth, Manuel Brhel, and Alexander Maedche. 2013. The state of the art
in automated requirements elicitation. Information and Software Technology 55, 10
(2013), 1695–1709.

[177] Sophie Middleton, Alexandra Charnock, Sarah Forster, and John Blakey. 2018.
Factors affecting -individual task prioritisation in a workplace setting. Future Healthc
J 5, 2 (June 2018), 138–142.

[178] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Confer-
ence on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-
4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[179] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
KaUstner. 2022. "Did you miss my comment or what?": understanding toxicity
in open source discussions. Proceedings of the 44th International Conference on
Software Engineering, 710–722. https://doi.org/10.1145/3510003.3510111

[180] Ambarish Moharil, Dmitrii Orlov, Samar Jameel, Tristan Trouwen, Nathan Cassee,
and Alexander Serebrenik. 2022. Between JIRA and GitHub: ASFBot and its influence
on human comments in issue trackers. Proceedings of the 19th International Con-
ference on Mining Software Repositories, 112–116. https://doi.org/10.1145/
3524842.3528528

[181] K. Molokken and M. Jorgensen. 2003. A review of software surveys on software
effort estimation. International Symposium on Empirical Software Engineering, 2003.
ISESE 2003. Proceedings., 223–230. https://doi.org/10.1109/ISESE.2003.
1237981

[182] Sebastian C. Müller and Thomas Fritz. 2015. Stuck and Frustrated or in Flow and
Happy: Sensing Developers’ Emotions and Progress. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1, Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.).
IEEE Computer Society, 688–699. https://doi.org/10.1109/ICSE.2015.334

[183] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. 2014. Do
Developers Feel Emotions? An Exploratory Analysis of Emotions in Software Artifacts.

https://doi.org/10.1145/3236024.3264833
https://doi.org/10.1016/j.asej.2014.04.011
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3510003.3510111
https://doi.org/10.1145/3524842.3528528
https://doi.org/10.1145/3524842.3528528
https://doi.org/10.1109/ISESE.2003.1237981
https://doi.org/10.1109/ISESE.2003.1237981
https://doi.org/10.1109/ICSE.2015.334

220 BIBLIOGRAPHY

In Proceedings of the 11th Working Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing Machinery, New York,
NY, USA, 262–271. https://doi.org/10.1145/2597073.2597086

[184] Vivek Narayanan, Ishan Arora, and Arjun Bhatia. 2013. Fast and Accurate Senti-
ment Classification Using an Enhanced Naive Bayes Model. In Intelligent Data En-
gineering and Automated Learning - IDEAL 2013 - 14th International Conference,
IDEAL 2013, Hefei, China, October 20-23, 2013. Proceedings (Lecture Notes in
Computer Science, Vol. 8206). Springer, 194–201. https://doi.org/10.1007/
978-3-642-41278-3_24

[185] Tetsuya Nasukawa and Jeonghee Yi. 2003. Sentiment analysis: capturing favora-
bility using natural language processing. In Proceedings of the 2nd International Con-
ference on Knowledge Capture (K-CAP 2003), John H. Gennari, Bruce W. Porter,
and Yolanda Gil (Eds.). ACM, 70–77. https://doi.org/10.1145/945645.945658

[186] Robert G. Newcombe. 1998. Interval estimation for the difference between indepen-
dent proportions: comparison of eleven methods. Statistics in Medicine 17, 8 (1998),
873–890. https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::
AID-SIM779>3.0.CO;2-I

[187] Finn Årup Nielsen. 2011. A new ANEW: Evaluation of a word list for sentiment
analysis in microblogs. In Proceedings of the ESWC2011 Workshop on ’Making Sense
of Microposts’: Big things come in small packages. 93–98.

[188] Ehsan Noei and Kelly Lyons. 2019. A survey of utilizing user-reviews posted on
Google play store. In Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering. 54–63.

[189] Nicole Novielli, Fabio Calefato, Davide Dongiovanni, Daniela Girardi, and Filippo
Lanubile. 2020. Can We Use SE-Specific Sentiment Analysis Tools in a Cross-
Platform Setting?. In Proceedings of the 17th International Conference on Mining
Software Repositories (Seoul, Republic of Korea) (MSR ’20). Association for Com-
puting Machinery, New York, NY, USA, 158–168. https://doi.org/10.1145/
3379597.3387446

[190] Nicole Novielli, Fabio Calefato, Filippo Lanubile, and Alexander Serebrenik. 2021.
Assessment of off-the-shelf SE-specific sentiment analysis tools: An extended repli-
cation study. Empir. Softw. Eng. 26, 4 (2021), 77. https://doi.org/10.1007/
s10664-021-09960-w

[191] Nicole Novielli, Daniela Girardi, and Filippo Lanubile. 2018. A benchmark study
on sentiment analysis for software engineering research. In Proceedings of the 15th
International Conference on Mining Software Repositories. ACM, New York, NY, USA,
364–375. https://doi.org/10.1145/3196398.3196403

[192] Nicole Novielli and Alexander Serebrenik. 2019. Sentiment and Emotion in Software
Engineering. IEEE Softw. 36, 5 (2019), 6–9. https://doi.org/10.1109/MS.2019.
2924013

https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1007/978-3-642-41278-3_24
https://doi.org/10.1007/978-3-642-41278-3_24
https://doi.org/10.1145/945645.945658
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
https://doi.org/10.1145/3379597.3387446
https://doi.org/10.1145/3379597.3387446
https://doi.org/10.1007/s10664-021-09960-w
https://doi.org/10.1007/s10664-021-09960-w
https://doi.org/10.1145/3196398.3196403
https://doi.org/10.1109/MS.2019.2924013
https://doi.org/10.1109/MS.2019.2924013

BIBLIOGRAPHY 221

[193] Nicole Novielli and Alexander Serebrenik. 2023. Emotion Analysis in Software
Ecosystems. , 105-127 pages. https://doi.org/10.1007/978-3-031-36060-2_5

[194] Martin Obaidi and Jil Klünder. 2021. Development and Application of Senti-
ment Analysis Tools in Software Engineering: A Systematic Literature Review. In
Evaluation and Assessment in Software Engineering (Trondheim, Norway) (EASE
2021). Association for Computing Machinery, New York, NY, USA, 80–89. https:
//doi.org/10.1145/3463274.3463328

[195] Hadas Okon-Singer, Talma Hendler, Luiz Pessoa, and Alexander J. Shackman.
2015. The Neurobiology of Emotion-Cognition Interactions: Fundamental Questions
and Strategies for Future Research. Frontiers in Human Neuroscience 9 (2 2015).
https://doi.org/10.3389/fnhum.2015.00058

[196] Jesper Olsson, Erik Risfelt, Terese Besker, Antonio Martini, and Richard Torkar.
2021. Measuring affective states from technical debt. Empirical Software Engineering
26 (9 2021), 105. Issue 5. https://doi.org/10.1007/s10664-021-09998-w

[197] Marco Ortu, Bram Adams, Giuseppe Destefanis, Parastou Tourani, Michele March-
esi, and Roberto Tonelli. 2015. Are Bullies More Productive? Empirical Study
of Affectiveness vs. Issue Fixing Time. 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories 2015-Augus, 303–313. Issue Section II.
https://doi.org/10.1109/MSR.2015.35

[198] Marco Ortu, Michele Marchesi, and Roberto Tonelli. 2019. Empirical Analysis of
Affect of Merged Issues on GitHub. In 2019 IEEE/ACM 4th International Workshop
on Emotion Awareness in Software Engineering (SEmotion). 46–48. https://doi.
org/10.1109/SEmotion.2019.00017

[199] Marco Ortu, Alessandro Murgia, Giuseppe Destefanis, Parastou Tourani, Roberto
Tonelli, Michele Marchesi, and Bram Adams. 2016. The emotional side of software
developers in JIRA. In Proceedings of the 13th International Conference on Mining
Software Repositories (MSR 2016). ACM, 480–483. https://doi.org/10.1145/
2901739.2903505

[200] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli Fontana, Rocco
Oliveto, Andy Zaidman, and Alexander Serebrenik. 2021. Beyond Technical Aspects:
How Do Community Smells Influence the Intensity of Code Smells? IEEE Transac-
tions on Software Engineering 47, 1 (2021), 108–129. https://doi.org/10.1109/
TSE.2018.2883603

[201] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An
Exploratory Study on the Relationship between Changes and Refactoring. 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC), 176–
185. https://doi.org/10.1109/ICPC.2017.38

[202] Endang Wahyu Pamungkas, Valerio Basile, and Viviana Patti. 2020. Misogyny
Detection in Twitter: a Multilingual and Cross-Domain Study. Information Processing
& Management 57 (11 2020), 102360. Issue 6. https://doi.org/10.1016/j.ipm.
2020.102360

https://doi.org/10.1007/978-3-031-36060-2_5
https://doi.org/10.1145/3463274.3463328
https://doi.org/10.1145/3463274.3463328
https://doi.org/10.3389/fnhum.2015.00058
https://doi.org/10.1007/s10664-021-09998-w
https://doi.org/10.1109/MSR.2015.35
https://doi.org/10.1109/SEmotion.2019.00017
https://doi.org/10.1109/SEmotion.2019.00017
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/ICPC.2017.38
https://doi.org/10.1016/j.ipm.2020.102360
https://doi.org/10.1016/j.ipm.2020.102360

222 BIBLIOGRAPHY

[203] Bo Pang and Lillian Lee. 2007. Opinion Mining and Sentiment Analysis. Founda-
tions and Trends in Information Retrieval 2, 1-2 (2007), 1–135. https://doi.org/
10.1561/1500000011

[204] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visag-
gio, Gerardo Canfora, and Harald C. Gall. 2015. How can I improve my app? Clas-
sifying user reviews for software maintenance and evolution. In Proceedings of the
2015 IEEE International Conference on Software Maintenance and Evolution (ICSME
2015). IEEE Computer Society, 281–290. https://doi.org/10.1109/ICSM.2015.
7332474

[205] Nikolaos Pappas and Andrei Popescu-Belis. 2013. Sentiment Analysis of User
Comments for One-Class Collaborative Filtering Over TED Talks. In Proceedings
of the 36th international ACM SIGIR conference on Research and development in
information retrieval (Dublin, Ireland) (SIGIR ’13). 773–776.

[206] Luca Pascarella and Alberto Bacchelli. 2017. Classifying Code Comments in Java
Open-Source Software Systems. 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), 227–237. https://doi.org/10.1109/MSR.
2017.63

[207] Rajshakhar Paul, Amiangshu Bosu, and Kazi Zakia Sultana. 2019. Expressions
of Sentiments during Code Reviews: Male vs. Female. In 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
26–37. https://doi.org/10.1109/SANER.2019.8667987

[208] Timo Pawelka and Elmar Jürgens. 2015. Is this code written in English? A
study of the natural language of comments and identifiers in practice. In 2015
IEEE International Conference on Software Maintenance and Evolution, ICSME
2015, Bremen, Germany, September 29 - October 1, 2015, Rainer Koschke, Jens
Krinke, and Martin P. Robillard (Eds.). IEEE Computer Society, 401–410. https:
//doi.org/10.1109/ICSM.2015.7332491

[209] Marco Pennacchiotti and Ana-Maria Popescu. 2011. Democrats, Republicans and
Starbucks Afficionados: User Classification in Twitter. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(San Diego, California, USA) (KDD ’11). Association for Computing Machinery, New
York, NY, USA, 430–438. https://doi.org/10.1145/2020408.2020477

[210] Anthony Peruma, Eman Abdullah AlOmar, Christian D. Newman, Mohamed Wiem
Mkaouer, and Ali Ouni. 2022. Refactoring debt: myth or reality? an exploratory
study on the relationship between technical debt and refactoring. Proceedings of the
19th International Conference on Mining Software Repositories, 127–131. https:
//doi.org/10.1145/3524842.3528527

[211] Gloria Phillips-Wren and Monica Adya. 2020. Decision making under stress: the
role of information overload, time pressure, complexity, and uncertainty. Journal of
Decision Systems 29 (8 2020), 213–225. Issue sup1. https://doi.org/10.1080/
12460125.2020.1768680

https://doi.org/10.1561/1500000011
https://doi.org/10.1561/1500000011
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/MSR.2017.63
https://doi.org/10.1109/MSR.2017.63
https://doi.org/10.1109/SANER.2019.8667987
https://doi.org/10.1109/ICSM.2015.7332491
https://doi.org/10.1109/ICSM.2015.7332491
https://doi.org/10.1145/2020408.2020477
https://doi.org/10.1145/3524842.3528527
https://doi.org/10.1145/3524842.3528527
https://doi.org/10.1080/12460125.2020.1768680
https://doi.org/10.1080/12460125.2020.1768680

BIBLIOGRAPHY 223

[212] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and
Emotion: Sentiment Analysis of Security Discussions on GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories (Hyderabad, India)
(MSR 2014). Association for Computing Machinery, New York, NY, USA, 348–351.
https://doi.org/10.1145/2597073.2597117

[213] Robert Plutchik. 1980. A General Psychoevolutionary Theory of Emotion. , 3-
33 pages. https://doi.org/10.1016/B978-0-12-558701-3.50007-7

[214] Roxana Lisette Quintanilla Portugal and Julio Cesar Sampaio do Prado Leite. 2018.
Usability Related Qualities Through Sentiment Analysis. In 1st International Work-
shop on Affective Computing for Requirements Engineering, AffectRE@RE 2018,
Banff, AB, Canada, August 21, 2018, Davide Fucci, Nicole Novielli, and Emitza
Guzman (Eds.). IEEE, 20–26. https://doi.org/10.1109/AffectRE.2018.00010

[215] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. 2014 IEEE International Conference on Software Maintenance and
Evolution, 91–100. https://doi.org/10.1109/ICSME.2014.31

[216] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan
Vasilescu. 2020. Stress and burnout in open source. Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and Emerging
Results, 57–60. https://doi.org/10.1145/3377816.3381732

[217] Leevi Rantala, Mika Mäntylä, and David Lo. 2020. Prevalence, Contents and
Automatic Detection of KL-SATD. In 46th Euromicro Conference on Software Engi-
neering and Advanced Applications, SEAA 2020, Portoroz, Slovenia, August 26-28,
2020. 385–388. https://doi.org/10.1109/SEAA51224.2020.00069

[218] Kumar Ravi and Vadlamani Ravi. 2015. A survey on opinion mining and sentiment
analysis: Tasks, approaches and applications. Knowledge-Based Systems 89 (2015),
14–46. https://doi.org/10.1016/j.knosys.2015.06.015

[219] Petar P. Raykov, Dominika Varga, and Chris M. Bird. 2023. False memories for
ending of events. Journal of Experimental Psychology: General 152 (12 2023), 3459–
3475. Issue 12. https://doi.org/10.1037/xge0001462

[220] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy.
2019. Neural Network-based Detection of Self-Admitted Technical Debt. ACM
Transactions on Software Engineering and Methodology 28 (7 2019), 1–45. Issue
3. https://doi.org/10.1145/3324916

[221] Kalle Rindell and Johannes Holvitie. 2019. Security Risk Assessment and Man-
agement as Technical Debt. In 2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security). 1–8. https://doi.org/10.1109/
CyberSecPODS.2019.8885100

[222] Martin P. Robillard, Deeksha M. Arya, Neil A. Ernst, Jin L.C. Guo, Maxime
Lamothe, Mathieu Nassif, Nicole Novielli, Alexander Serebrenik, Igor Steinmacher,

https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1016/B978-0-12-558701-3.50007-7
https://doi.org/10.1109/AffectRE.2018.00010
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1145/3377816.3381732
https://doi.org/10.1109/SEAA51224.2020.00069
https://doi.org/10.1016/j.knosys.2015.06.015
https://doi.org/10.1037/xge0001462
https://doi.org/10.1145/3324916
https://doi.org/10.1109/CyberSecPODS.2019.8885100
https://doi.org/10.1109/CyberSecPODS.2019.8885100

224 BIBLIOGRAPHY

and Klaas-Jan Stol. 2024. Communicating Study Design Trade-offs in Software En-
gineering. ACM Transactions on Software Engineering and Methodology (3 2024).
https://doi.org/10.1145/3649598

[223] Peter Henry Rossi and Steven L. Nock. 1983. Measuring social judgments : the
factorial survey approach. Social Forces 12 (1983), 598.

[224] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering 14 (April
2009), 131–164. Issue 2. https://doi.org/10.1007/s10664-008-9102-8

[225] James A. Russell. 1991. Culture and the categorization of emotions. Psychological
Bulletin 110 (1991), 426–450. Issue 3. https://doi.org/10.1037/0033-2909.
110.3.426

[226] Barbara Russo, Matteo Camilli, and Moritz Mock. 2022. WeakSATD: Detecting
Weak Self-admitted Technical Debt. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories. page to appear.

[227] Mary Sánchez-Gordón and Ricardo Colomo-Palacios. 2019. Taking the emotional
pulse of software engineering—A systematic literature review of empirical studies.
Information and Software Technology 115 (2019), 23–43.

[228] Arghavan Sanei, Jinghui Cheng, and Bram Adams. 2021. The Impacts of Senti-
ments and Tones in Community-Generated Issue Discussions. 2021 IEEE/ACM 13th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 1–10. https://doi.org/10.1109/CHASE52884.2021.00009

[229] Simone Scalabrino, Gabriele Bavota, Barbara Russo, Massimiliano Di Penta, and
Rocco Oliveto. 2019. Listening to the Crowd for the Release Planning of Mobile
Apps. IEEE Transactions on Software Engineering 45, 1 (2019), 68–86. https:
//doi.org/10.1109/TSE.2017.2759112

[230] Klaus R. Scherer, Tanja Wranik, Janique Sangsue, Véronique Tran, and
Ursula Scherer. 2004. Emotions in everyday life: probability of occur-
rence, risk factors, appraisal and reaction patterns. Social Science Informa-
tion 43, 4 (2004), 499–570. https://doi.org/10.1177/0539018404047701
arXiv:https://doi.org/10.1177/0539018404047701

[231] C.B. Seaman. 1999. Qualitative methods in empirical studies of software en-
gineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.
https://doi.org/10.1109/32.799955

[232] Carolyn Seaman and Yuepu Guo. 2011. Measuring and monitoring technical debt.
Advances in Computers (2011).

[233] Alexander Serebrenik. 2017. Emotional Labor of Software Engineers. In Proceed-
ings of the 16th edition of the BElgian-NEtherlands software eVOLution symposium,
Antwerp, Belgium, December 4-5, 2017. (CEUR Workshop Proceedings, Vol. 2047),
Serge Demeyer, Ali Parsai, Gulsher Laghari, and Brent van Bladel (Eds.). CEUR-
WS.org, 1–6.

https://doi.org/10.1145/3649598
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1037/0033-2909.110.3.426
https://doi.org/10.1037/0033-2909.110.3.426
https://doi.org/10.1109/CHASE52884.2021.00009
https://doi.org/10.1109/TSE.2017.2759112
https://doi.org/10.1109/TSE.2017.2759112
https://doi.org/10.1177/0539018404047701
https://doi.org/10.1109/32.799955

BIBLIOGRAPHY 225

[234] Alexander Serebrenik and Nathan Cassee. 2024. Teaching Empirical Methods at
Eindhoven University of Technology. Springer, to appear.

[235] P Shaver, J Schwartz, D Kirson, and C O’Connor. 1987. Emotion knowledge:
further exploration of a prototype approach. J Pers Soc Psychol 52, 6 (jun 1987),
1061–1086.

[236] Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo. 2008. The role
of replications in Empirical Software Engineering. Empirical Software Engineering 13,
2 (01 Apr 2008), 211–218. https://doi.org/10.1007/s10664-008-9060-1

[237] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep learning is not
all you need. Information Fusion 81 (5 2022), 84–90. https://doi.org/10.1016/
j.inffus.2021.11.011

[238] Puneet Kaur Sidhu, Gunter Mussbacher, and Shane McIntosh. 2019. Reuse (or
Lack Thereof) in Travis CI Specifications: An Empirical Study of CI Phases and
Commands. 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 524–533. https://doi.org/10.1109/SANER.2019.
8668029

[239] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and modeling programming experience. Empir. Softw. Eng. 19, 5
(2014), 1299–1334. https://doi.org/10.1007/S10664-013-9286-4

[240] Navdeep Singh and Paramvir Singh. 2018. How Do Code Refactoring Activities
Impact Software Developers’ Sentiments? - An Empirical Investigation into GitHub
Commits. Proceedings - Asia-Pacific Software Engineering Conference, APSEC 2017-
Decem (2018), 648–653. Issue December. https://doi.org/10.1109/APSEC.
2017.79

[241] Vinayak Sinha, Alina Lazar, and Bonita Sharif. 2016. Analyzing developer senti-
ment in commit logs. In Proceedings of the 13th International Conference on Mining
Software Repositories (MSR 2016). ACM, 520–523. https://doi.org/10.1145/
2901739.2903501

[242] Tom De Smedt and Walter Daelemans. 2012. Pattern for Python. J. Mach. Learn.
Res. 13 (2012), 2063–2067. http://dl.acm.org/citation.cfm?id=2343710

[243] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2013). ACL, 1631–
1642. https://www.aclweb.org/anthology/D13-1170/

[244] Beverley A. Sparks and Victoria Browning. 2011. The impact of online reviews on
hotel booking intentions and perception of trust. Tourism Management 32, 6 (2011),
1310–1323. https://doi.org/10.1016/j.tourman.2010.12.011

[245] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

https://doi.org/10.1007/s10664-008-9060-1
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1109/SANER.2019.8668029
https://doi.org/10.1109/SANER.2019.8668029
https://doi.org/10.1007/S10664-013-9286-4
https://doi.org/10.1109/APSEC.2017.79
https://doi.org/10.1109/APSEC.2017.79
https://doi.org/10.1145/2901739.2903501
https://doi.org/10.1145/2901739.2903501
http://dl.acm.org/citation.cfm?id=2343710
https://www.aclweb.org/anthology/D13-1170/
https://doi.org/10.1016/j.tourman.2010.12.011

226 BIBLIOGRAPHY

[246] Murali Sridharan, Leevi Rantala, and Mika Mäntylä. 2023. PENTACET data-
23 Million Contextual Code Comments and 250,000 SATD comments. https:
//doi.org/10.1109/MSR59073.2023.00063

[247] Mladen Stanojevic and Sanja Vraneš. 2009. Semantic Approach to Knowl-
edge Representation and Processing. , 24 pages. https://doi.org/10.4018/
978-1-60566-650-1.ch001

[248] Claude M. Steele and Joshua Aronson. 1995. Stereotype threat and the intellectual
test performance of African Americans. Journal of Personality and Social Psychology
69 (11 1995), 797–811. Issue 5. https://doi.org/10.1037/0022-3514.69.5.797

[249] Angelika M. Stefan, Quentin F. Gronau, Felix D. Schönbrodt, and Eric-Jan Wa-
genmakers. 2019. A tutorial on Bayes Factor Design Analysis using an informed
prior. Behavior Research Methods 51 (6 2019), 1042–1058. Issue 3. https:
//doi.org/10.3758/s13428-018-01189-8

[250] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. 2015.
Social Barriers Faced by Newcomers Placing Their First Contribution in Open Source
Software Projects. In CSCW 2015 (Vancouver, BC, Canada) (CSCW ’15). Association
for Computing Machinery, New York, NY, USA, 1379–1392. https://doi.org/10.
1145/2675133.2675215

[251] Klaas Jan Stol and Brian Fitzgerald. 2018. The ABC of software engineering
research. ACM Transactions on Software Engineering and Methodology 27 (2018).
Issue 3. https://doi.org/10.1145/3241743

[252] Margaret-Anne Storey. 2012. The Evolution of the Social Programmer. In Proceed-
ings of the 9th IEEE Working Conference on Mining Software Repositories (Zurich,
Switzerland) (MSR ’12). IEEE Press, 140.

[253] Margaret-Anne Storey, Neil A. Ernst, Courtney Williams, and Eirini Kalliamvakou.
2020. The who, what, how of software engineering research: a socio-technical
framework. Empirical Software Engineering 25 (9 2020), 4097–4129. Issue 5.
https://doi.org/10.1007/s10664-020-09858-z

[254] Margaret-Anne Storey, Daniel Russo, Nicole Novielli, Takashi Kobayashi, and Dong
Wang. 2024. A Disruptive Research Playbook for Studying Disruptive Innovations.
arXiv:2402.13329 [cs.SE]

[255] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer.
2008. TODO or to Bug: Exploring How Task Annotations Play a Role in the Work
Practices of Software Developers. In Proceedings of the 30th International Conference
on Software Engineering (Leipzig, Germany) (ICSE ’08). Association for Computing
Machinery, New York, NY, USA, 251–260. https://doi.org/10.1145/1368088.
1368123

[256] Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein Rosé, Thomas Zim-
mermann, and James D. Herbsleb. 2020. BOTse: Bots in Software Engineer-
ing (Dagstuhl Seminar 19471). Dagstuhl Reports 9, 11 (2020), 84–96. https:
//doi.org/10.4230/DagRep.9.11.84

https://doi.org/10.1109/MSR59073.2023.00063
https://doi.org/10.1109/MSR59073.2023.00063
https://doi.org/10.4018/978-1-60566-650-1.ch001
https://doi.org/10.4018/978-1-60566-650-1.ch001
https://doi.org/10.1037/0022-3514.69.5.797
https://doi.org/10.3758/s13428-018-01189-8
https://doi.org/10.3758/s13428-018-01189-8
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/3241743
https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1145/1368088.1368123
https://doi.org/10.1145/1368088.1368123
https://doi.org/10.4230/DagRep.9.11.84
https://doi.org/10.4230/DagRep.9.11.84

BIBLIOGRAPHY 227

[257] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Produc-
tivity One Bot at a Time. Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 928–931. https:
//doi.org/10.1145/2950290.2983989

[258] Margaret Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and
Daniel M. German. 2017. How Social and Communication Channels Shape and Chal-
lenge a Participatory Culture in Software Development. IEEE Transactions on Soft-
ware Engineering 43 (2017), 185–204. Issue 2. https://doi.org/10.1109/TSE.
2016.2584053

[259] Mark Swillus and Andy Zaidman. 2023. Sentiment overflow in the testing stack:
Analyzing software testing posts on Stack Overflow. Journal of Systems and Software
205 (11 2023), 111804. https://doi.org/10.1016/j.jss.2023.111804

[260] Jie Tan, Daniel Feitosa, and Paris Avgeriou. 2021. Do practitioners intention-
ally self-fix Technical Debt and why? 2021 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), 251–262. https://doi.org/10.1109/
ICSME52107.2021.00029

[261] Mohammadali Tavakoli, Liping Zhao, Atefeh Heydari, and Goran Nenadić. 2018.
Extracting useful software development information from mobile application reviews:
A survey of intelligent mining techniques and tools. Expert Systems with Applications
113 (2018), 186–199.

[262] Mike Thelwall. 2017. TensiStrength: Stress and relaxation magnitude detection for
social media texts. Inf. Process. Manag. 53, 1 (2017), 106–121. https://doi.org/
10.1016/j.ipm.2016.06.009

[263] Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. 2012. Sentiment strength
detection for the social web. Journal of the American Society for Information Science
and Technology 63, 1 (jan 2012), 163–173. https://doi.org/10.1002/asi.21662

[264] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
2010. Sentiment strength detection in short informal text. Journal of the Association
for Information Science and Technology 61, 12 (2010), 2544–2558. https://doi.
org/10.1002/asi.21416

[265] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86 (6 2013), 1498–1516. Issue 6. https:
//doi.org/10.1016/j.jss.2012.12.052

[266] Richard Torkar, Carlo A. Furia, Robert Feldt, Francisco Gomes de Oliveira Neto,
Lucas Gren, Per Lenberg, and Neil A. Ernst. 2022. A Method to Assess and Argue
for Practical Significance in Software Engineering. IEEE Transactions on Software
Engineering 48 (6 2022), 2053–2065. Issue 6. https://doi.org/10.1109/TSE.
2020.3048991

https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1109/TSE.2016.2584053
https://doi.org/10.1109/TSE.2016.2584053
https://doi.org/10.1016/j.jss.2023.111804
https://doi.org/10.1109/ICSME52107.2021.00029
https://doi.org/10.1109/ICSME52107.2021.00029
https://doi.org/10.1016/j.ipm.2016.06.009
https://doi.org/10.1016/j.ipm.2016.06.009
https://doi.org/10.1002/asi.21662
https://doi.org/10.1002/asi.21416
https://doi.org/10.1002/asi.21416
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1109/TSE.2020.3048991
https://doi.org/10.1109/TSE.2020.3048991

228 BIBLIOGRAPHY

[267] Parastou Tourani, Bram Adams, and Alexander Serebrenik. 2017. Code of conduct
in open source projects. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 24–33. https://doi.org/10.
1109/SANER.2017.7884606

[268] Gias Uddin, Md Abdullah Al Alamin, and Ajoy Das. 2023. An Empirical Study of
Deep Learning Sentiment Detection Tools for Software Engineering in Cross-Platform
Settings. arXiv:2301.06661 [cs.SE]

[269] Gias Uddin, Yann-Gaël Guéhénuc, Foutse Khomh, and Chanchal K. Roy. 2022.
An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment
Detection Tools for Software Engineering Datasets. ACM Transactions on Software
Engineering and Methodology 31 (7 2022), 1–38. Issue 3. https://doi.org/10.
1145/3491211

[270] Gias Uddin and Foutse Khomh. 2017. Opiner: An opinion search and summarization
engine for APIs. 2017 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 978–983. https://doi.org/10.1109/ASE.2017.8115715

[271] Gias Uddin and Foutse Khomh. 2021. Automatic Mining of Opinions Expressed
About APIs in Stack Overflow. IEEE Transactions on Software Engineering 47, 3
(2021), 522–559. https://doi.org/10.1109/TSE.2019.2900245

[272] Andric Valdez, Hanna Oktaba, Helena Gomez, and Aurora Vizcaino. 2020. Sen-
timent Analysis in Jira Software Repositories. 2020 8th International Conference
in Software Engineering Research and Innovation (CONISOFT), 254–259. https:
//doi.org/10.1109/CONISOFT50191.2020.00043

[273] Gerben A. van Kleef. 2016. The Interpersonal Dynamics of Emotion. Cambridge
University Press. https://doi.org/10.1017/CBO9781107261396

[274] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massi-
miliano Di Penta. 2016. Release planning of mobile apps based on user reviews.
In Proceedings of the 38th International Conference on Software Engineering (ICSE
2016). ACM, 14–24. https://doi.org/10.1145/2884781.2884818

[275] Chong Wang, Maya Daneva, Marten van Sinderen, and Peng Liang. 2019. A
systematic mapping study on crowdsourced requirements engineering using user feed-
back. Journal of software: Evolution and Process 31, 10 (2019), e2199.

[276] David Watson and Auke Tellegen. 1985. Toward a consensual structure of mood.
Psychological Bulletin 98 (1985), 219–235. Issue 2. https://doi.org/10.1037/
0033-2909.98.2.219

[277] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the Impact
of Self-Admitted Technical Debt on Software Quality. 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 179–188.
https://doi.org/10.1109/SANER.2016.72

https://doi.org/10.1109/SANER.2017.7884606
https://doi.org/10.1109/SANER.2017.7884606
https://doi.org/10.1145/3491211
https://doi.org/10.1145/3491211
https://doi.org/10.1109/ASE.2017.8115715
https://doi.org/10.1109/TSE.2019.2900245
https://doi.org/10.1109/CONISOFT50191.2020.00043
https://doi.org/10.1109/CONISOFT50191.2020.00043
https://doi.org/10.1017/CBO9781107261396
https://doi.org/10.1145/2884781.2884818
https://doi.org/10.1037/0033-2909.98.2.219
https://doi.org/10.1037/0033-2909.98.2.219
https://doi.org/10.1109/SANER.2016.72

BIBLIOGRAPHY 229

[278] Karl Werder. 2018. The evolution of emotional displays in open source software
development teams: an individual growth curve analysis. In Proceedings of the 3rd
International Workshop on Emotion Awareness in Software Engineering (SEmotion
2018). ACM, 1–6. https://doi.org/10.1145/3194932.3194934

[279] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science &
Business Media.

[280] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Planning. , 89-116 pages. https://doi.org/10.1007/
978-3-642-29044-2_8

[281] Peter Wright. 1974. The harassed decision maker: Time pressures, distractions,
and the use of evidence. Journal of Applied Psychology 59, 5 (1974), 555–561.

[282] Junfang Wu, Chunyang Ye, and Hui Zhou. 2021. BERT for Sentiment Classification
in Software Engineering. In 2021 International Conference on Service Science (ICSS).
115–121. https://doi.org/10.1109/ICSS53362.2021.00026

[283] Laerte Xavier, Fabio Ferreira, Rodrigo Brito, and Marco Tulio Valente. 2020. Be-
yond the Code: Mining self-admitted technical debt in issue tracker systems. Proceed-
ings of the 17th International Conference on Mining Software Repositories, 137–146.
https://doi.org/10.1145/3379597.3387459

[284] Laerte Xavier, João Eduardo Montandon, Fabio Ferreira, Rodrigo Brito, and
Marco Tulio Valente. 2022. On the documentation of self-admitted technical debt
in issues. Empirical Software Engineering 27 (12 2022), 163. Issue 7. https:
//doi.org/10.1007/s10664-022-10203-9

[285] Jun Xu, Yongmei Liu, and Yi Guo. 2014. The role of subordinate emotional masking
in leader–member exchange and outcomes: A two-sample investigation. Journal of
Business Research 67 (2 2014), 100–107. Issue 2. https://doi.org/10.1016/j.
jbusres.2012.11.011

[286] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What
Security Questions Do Developers Ask? A Large-Scale Study of Stack Overflow
Posts. Journal of Computer Science and Technology 31, 5 (01 Sep 2016), 910–924.
https://doi.org/10.1007/s11390-016-1672-0

[287] Jerin Yasmin, Mohammed Sadegh Sheikhaei, and Yuan Tian. 2022. A First Look
at Duplicate and Near-duplicate Self-admitted Technical Debt Comments. In Pro-
ceedings of the 30th International Conference on Program Comprehension. page to
appear.

[288] Rahul Yedida and Tim Menzies. 2022. How to Improve Deep Learning for Software
Analytics (a case study with code smell detection). Mining Software Repositories
MSR (’22), 156–166.

https://doi.org/10.1145/3194932.3194934
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1109/ICSS53362.2021.00026
https://doi.org/10.1145/3379597.3387459
https://doi.org/10.1007/s10664-022-10203-9
https://doi.org/10.1007/s10664-022-10203-9
https://doi.org/10.1016/j.jbusres.2012.11.011
https://doi.org/10.1016/j.jbusres.2012.11.011
https://doi.org/10.1007/s11390-016-1672-0

230 BIBLIOGRAPHY

[289] Dannii Y. Yeung, Carmen K.M. Wong, and David P.P. Lok. 2011. Emotion reg-
ulation mediates age differences in emotions. Aging & Mental Health 15 (4 2011),
414–418. Issue 3. https://doi.org/10.1080/13607863.2010.536136

[290] Dezhi Yin, Samuel D. Bond, and Han Zhang. 2010. Are Bad Reviews Al-
ways Stronger than Good? Asymmetric Negativity Bias in the Formation of On-
line Consumer Trust. In Proceedings of the International Conference on Informa-
tion Systems, ICIS 2010, Saint Louis, Missouri, USA, December 12-15, 2010, Ra-
jiv Sabherwal and Mary Sumner (Eds.). Association for Information Systems, 193.
http://aisel.aisnet.org/icis2010_submissions/193

[291] Fiorella Zampetti, Gianmarco Fucci, Alexander Serebrenik, and Massimiliano Di
Penta. 2021. Self-admitted technical debt practices: a comparison between industry
and open-source. Empirical Software Engineering 26 (11 2021), 131. Issue 6. https:
//doi.org/10.1007/s10664-021-10031-3

[292] Fiorella Zampetti, Cedric Noiseux, Giuliano Antoniol, Foutse Khomh, and Mas-
similiano Di Penta. 2017. Recommending when Design Technical Debt Should be
Self-Admitted. In International Conference on Software Maintenance and Evolution.
IEEE Computer Society, 216–226.

[293] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018. Was
self-admitted technical debt removal a real removal?: an in-depth perspective. In
Proceedings of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018. 526–536.

[294] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018. Was
self-admitted technical debt removal a real removal? Proceedings of the 15th Inter-
national Conference on Mining Software Repositories, 526–536. https://doi.org/
10.1145/3196398.3196423

[295] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2020. Auto-
matically Learning Patterns for Self-Admitted Technical Debt Removal. 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), 355–366. https://doi.org/10.1109/SANER48275.2020.9054868

[296] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn B. Seaman. 2011.
Investigating the impact of design debt on software quality. In Proceedings of the 2nd
Workshop on Managing Technical Debt, MTD 2011, Waikiki, Honolulu, HI, USA,
May 23, 2011. 17–23.

[297] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. 2023. Revisiting
Sentiment Analysis for Software Engineering in the Era of Large Language Models.
pre-print (10 2023). http://arxiv.org/abs/2310.11113

[298] Ting Zhang, Bowen Xu, Ferdian Thung, Stefanus Agus Haryono, David Lo, and
Lingxiao Jiang. 2020. Sentiment Analysis for Software Engineering: How Far Can
Pre-trained Transformer Models Go? 2020 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), 70–80. https://doi.org/10.1109/
ICSME46990.2020.00017

https://doi.org/10.1080/13607863.2010.536136
http://aisel.aisnet.org/icis2010_submissions/193
https://doi.org/10.1007/s10664-021-10031-3
https://doi.org/10.1007/s10664-021-10031-3
https://doi.org/10.1145/3196398.3196423
https://doi.org/10.1145/3196398.3196423
https://doi.org/10.1109/SANER48275.2020.9054868
http://arxiv.org/abs/2310.11113
https://doi.org/10.1109/ICSME46990.2020.00017
https://doi.org/10.1109/ICSME46990.2020.00017

BIBLIOGRAPHY 231

[299] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan,
and Xiaoming Li. 2011. Comparing Twitter and Traditional Media Using Topic Mod-
els. In Advances in Information Retrieval - 33rd European Conference on IR Re-
search, ECIR 2011, Dublin, Ireland, April 18-21, 2011. Proceedings (Lecture Notes
in Computer Science, Vol. 6611). Springer, 338–349. https://doi.org/10.1007/
978-3-642-20161-5_34

https://doi.org/10.1007/978-3-642-20161-5_34
https://doi.org/10.1007/978-3-642-20161-5_34

232 BIBLIOGRAPHY

Studies selected for the
Literature Review

[P1] Zahra Shakeri Hossein Abad, Vincenzo Gervasi, Didar Zowghi, and Ken Barker.
2018. ELICA: An Automated Tool for Dynamic Extraction of Requirements Rele-
vant Information. In 5th International Workshop on Artificial Intelligence for Re-
quirements Engineering, AIRE@RE 2018, Banff, AB, Canada, August 21, 2018,
Eduard C. Groen, Rachel Harrison, Pradeep K. Murukannaiah, and Andreas Vo-
gelsang (Eds.). IEEE, 8–14. https://doi.org/10.1109/AIRE.2018.00007

[P2] Zahra Shakeri Hossein Abad, Vincenzo Gervasi, Didar Zowghi, and Behrouz H.
Far. 2019. Supporting analysts by dynamic extraction and classification of
requirements-related knowledge. In Proceedings of the 41st International Con-
ference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM,
442–453. https://doi.org/10.1109/ICSE.2019.00057

[P3] Md. Ahasanuzzaman, Muhammad Asaduzzaman, Chanchal K. Roy, and Kevin A.
Schneider. 2020. CAPS: a supervised technique for classifying Stack Overflow
posts concerning API issues. Empir. Softw. Eng. 25, 2 (2020), 1493–1532.
https://doi.org/10.1007/s10664-019-09743-4

[P4] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. 2017.
SentiCR: a customized sentiment analysis tool for code review interactions. In Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, Grig-
ore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer
Society, 106–111. https://doi.org/10.1109/ASE.2017.8115623

[P5] Jumoke Abass Alesinloye, Eoin Groarke, Jaganath Babu, Subathra Srinivasan,
Greg Curran, and Denis Dennehy. 2019. Sentiment analysis of open source soft-
ware community mailing list: a preliminary analysis. In Proceedings of the 15th In-
ternational Symposium on Open Collaboration, OpenSym 2019, Skövde, Sweden,

233

https://doi.org/10.1109/AIRE.2018.00007
https://doi.org/10.1109/ICSE.2019.00057
https://doi.org/10.1007/s10664-019-09743-4
https://doi.org/10.1109/ASE.2017.8115623

234 STUDIES SELECTED FOR THE LITERATURE REVIEW

August 20-22, 2019, Björn Lundell, Jonas Gamalielsson, Lorraine Morgan, and
Gregorio Robles (Eds.). ACM, 21:1–21:5. https://doi.org/10.1145/3306446.
3340824

[P6] Mohamed Ali, Mona Erfani Joorabchi, and Ali Mesbah. 2017. Same App,
Different App Stores: A Comparative Study. In 4th IEEE/ACM International
Conference on Mobile Software Engineering and Systems, MOBILESoft@ICSE
2017, Buenos Aires, Argentina, May 22-23, 2017. IEEE, 79–90. https:
//doi.org/10.1109/MOBILESoft.2017.3

[P7] Nazakat Ali and Jang-Eui Hong. 2019. Value-Oriented Requirements: Eliciting
Domain Requirements from Social Network Services to Evolve Software Product
Lines. Applied Sciences 9, 19 (2019), 3944.

[P8] Nazakat Ali, Sangwon Hwang, and Jang-Eui Hong. 2019. Your Opinions Let
us Know: Mining Social Network Sites to Evolve Software Product Lines. KSII
Trans. Internet Inf. Syst. 13, 8 (2019), 4191–4211. https://doi.org/10.3837/
tiis.2019.08.021

[P9] Rana Alkadhi, Teodora Lata, Emitza Guzman, and Bernd Bruegge. 2017. Ra-
tionale in development chat messages: an exploratory study. In Proceedings
of the 14th International Conference on Mining Software Repositories, MSR
2017, Buenos Aires, Argentina, May 20-28, 2017, Jesús M. González-Barahona,
Abram Hindle, and Lin Tan (Eds.). IEEE Computer Society, 436–446. https:
//doi.org/10.1109/MSR.2017.43

[P10] Asma Musabah Alkalbani, Ahmed Mohamed Ghamry, Farookh Khadeer Hussain,
and Omar Khadeer Hussain. 2016. Sentiment Analysis and Classification for
Software as a Service Reviews. In 30th IEEE International Conference on Ad-
vanced Information Networking and Applications, AINA 2016, Crans-Montana,
Switzerland, 23-25 March, 2016, Leonard Barolli, Makoto Takizawa, Tomoya
Enokido, Antonio J. Jara, and Yann Bocchi (Eds.). IEEE Computer Society, 53–
58. https://doi.org/10.1109/AINA.2016.148

[P11] Rakhmat Arianto, Ford Lumban Gaol, Edi Abdurachman, Yaya Heryadi, Harco
Leslie Hendric Spits Warnars, Benfano Soewito, and Horacio Perez-Sanchez. 2017.
Quality measurement of Android Messaging Application based on user Experience
in Microblog. In 2017 International Conference on Applied Computer and Com-
munication Technologies (ComCom). IEEE, 1–5.

[P12] Ikram El Asri, Noureddine Kerzazi, Gias Uddin, Foutse Khomh, and Mohammed
Amine Janati Idrissi. 2019. An empirical study of sentiments in code reviews. Inf.
Softw. Technol. 114 (2019), 37–54. https://doi.org/10.1016/j.infsof.
2019.06.005

[P13] Elsa Bakiu and Emitza Guzman. 2017. Which Feature is Unusable? Detect-
ing Usability and User Experience Issues from User Reviews. In IEEE 25th In-
ternational Requirements Engineering Conference Workshops, RE 2017 Work-
shops, Lisbon, Portugal, September 4-8, 2017. IEEE Computer Society, 182–187.
https://doi.org/10.1109/REW.2017.76

https://doi.org/10.1145/3306446.3340824
https://doi.org/10.1145/3306446.3340824
https://doi.org/10.1109/MOBILESoft.2017.3
https://doi.org/10.1109/MOBILESoft.2017.3
https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.1109/MSR.2017.43
https://doi.org/10.1109/MSR.2017.43
https://doi.org/10.1109/AINA.2016.148
https://doi.org/10.1016/j.infsof.2019.06.005
https://doi.org/10.1016/j.infsof.2019.06.005
https://doi.org/10.1109/REW.2017.76

STUDIES SELECTED FOR THE LITERATURE REVIEW 235

[P14] Emna Ben-Abdallah, Khouloud Boukadi, Jaime Lloret, and Mohamed Hammami.
[n. d.]. CROSA: Context-aware cloud service ranking approach using online re-
views based on sentiment analysis. Concurrency and Computation: Practice and
Experience n/a, n/a ([n. d.]), e5358. https://doi.org/10.1002/cpe.5358
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5358 e5358 cpe.5358.

[P15] Eeshita Biswas, K. Vijay-Shanker, and Lori L. Pollock. 2019. Exploring word
embedding techniques to improve sentiment analysis of software engineering
texts. In Proceedings of the 16th International Conference on Mining Soft-
ware Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, Margaret-
Anne D. Storey, Bram Adams, and Sonia Haiduc (Eds.). IEEE / ACM, 68–78.
https://doi.org/10.1109/MSR.2019.00020

[P16] Cássio Castaldi Araujo Blaz and Karin Becker. 2016. Sentiment analysis in tickets
for IT support. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, Miryung
Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 235–246. https://doi.
org/10.1145/2901739.2901781

[P17] Ian Brooks and Kathleen M. Swigger. 2012. Using sentiment analysis to mea-
sure the effects of leaders in global software development. In 2012 International
Conference on Collaboration Technologies and Systems, CTS 2012, Denver, CO,
USA, May 21-25, 2012, Waleed W. Smari and Geoffrey Charles Fox (Eds.). IEEE,
517–524. https://doi.org/10.1109/CTS.2012.6261099

[P18] Jim Buchan, Muneera Bano, Didar Zowghi, and Phonephasouk Volabouth. 2018.
Semi-Automated Extraction of New Requirements from Online Reviews for Soft-
ware Product Evolution. In 25th Australasian Software Engineering Conference,
ASWEC 2018, Adelaide, Australia, November 26-30, 2018. IEEE Computer Soci-
ety, 31–40. https://doi.org/10.1109/ASWEC.2018.00013

[P19] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. 2018.
Sentiment Polarity Detection for Software Development. Empir. Softw. Eng. 23,
3 (2018), 1352–1382. https://doi.org/10.1007/s10664-017-9546-9

[P20] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2017. EmoTxt: A toolkit for
emotion recognition from text. In Seventh International Conference on Affective
Computing and Intelligent Interaction Workshops and Demos, ACII Workshops
2017, San Antonio, TX, USA, October 23-26, 2017. IEEE Computer Society,
79–80. https://doi.org/10.1109/ACIIW.2017.8272591

[P21] Laura V. Galvis Carreño and Kristina Winbladh. 2013. Analysis of user comments:
an approach for software requirements evolution. In 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,
David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer Society,
582–591. https://doi.org/10.1109/ICSE.2013.6606604

[P22] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang. 2014.
AR-miner: mining informative reviews for developers from mobile app market-

https://doi.org/10.1002/cpe.5358
https://doi.org/10.1109/MSR.2019.00020
https://doi.org/10.1145/2901739.2901781
https://doi.org/10.1145/2901739.2901781
https://doi.org/10.1109/CTS.2012.6261099
https://doi.org/10.1109/ASWEC.2018.00013
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1109/ACIIW.2017.8272591
https://doi.org/10.1109/ICSE.2013.6606604

236 STUDIES SELECTED FOR THE LITERATURE REVIEW

place. In 36th International Conference on Software Engineering, ICSE ’14, Hyder-
abad, India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André
van der Hoek (Eds.). ACM, 767–778. https://doi.org/10.1145/2568225.
2568263

[P23] Zhenpeng Chen, Yanbin Cao, Xuan Lu, Qiaozhu Mei, and Xuanzhe Liu. 2019.
SEntiMoji: an emoji-powered learning approach for sentiment analysis in software
engineering. (2019), 841–852. https://doi.org/10.1145/3338906.3338977

[P24] Jonathan Cheruvelil and Bruno C. da Silva. 2019. Developers’ sentiment and issue
reopening. In Proceedings of the 4th International Workshop on Emotion Aware-
ness in Software Engineering, SEmotion@ICSE 2019, Montreal, QC, Canada, May
28, 2019. IEEE / ACM, 29–33. https://doi.org/10.1109/SEmotion.2019.
00013

[P25] Adelina Ciurumelea, Andreas Schaufelbühl, Sebastiano Panichella, and Harald C.
Gall. 2017. Analyzing reviews and code of mobile apps for better release plan-
ning. In IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017, Martin
Pinzger, Gabriele Bavota, and Andrian Marcus (Eds.). IEEE Computer Society,
91–102. https://doi.org/10.1109/SANER.2017.7884612

[P26] Maëlick Claes, Mika Mäntylä, and Umar Farooq. 2018. On the use of emoticons
in open source software development. (2018), 50:1–50:4. https://doi.org/
10.1145/3239235.3267434

[P27] Guilherme A. Maldonado da Cruz, Elisa Hatsue Moriya Huzita, and
Valéria Delisandra Feltrim. 2016. Estimating Trust in Virtual Teams - A Frame-
work based on Sentiment Analysis. In ICEIS 2016 - Proceedings of the 18th
International Conference on Enterprise Information Systems, Volume 1, Rome,
Italy, April 25-28, 2016, Slimane Hammoudi, Leszek A. Maciaszek, Michele Mis-
sikoff, Olivier Camp, and José Cordeiro (Eds.). SciTePress, 464–471. https:
//doi.org/10.5220/0005830604640471

[P28] Fabiano Dalpiaz and Micaela Parente. 2019. RE-SWOT: From User Feedback
to Requirements via Competitor Analysis. In Requirements Engineering: Founda-
tion for Software Quality - 25th International Working Conference, REFSQ 2019,
Essen, Germany, March 18-21, 2019, Proceedings (Lecture Notes in Computer
Science, Vol. 11412), Eric Knauss and Michael Goedicke (Eds.). Springer, 55–70.
https://doi.org/10.1007/978-3-030-15538-4_4

[P29] R. Dehkharghani and C. Yilmaz. 2013. Automatically identifying a software prod-
uct’s quality attributes through sentiment analysis of tweets. In 2013 1st Inter-
national Workshop on Natural Language Analysis in Software Engineering (Nat-
uraLiSE). 25–30. https://doi.org/10.1109/NAturaLiSE.2013.6611717

[P30] Roger Deocadez, Rachel Harrison, and Daniel Rodríguez. 2017. Automatically
Classifying Requirements from App Stores: A Preliminary Study. In IEEE 25th

https://doi.org/10.1145/2568225.2568263
https://doi.org/10.1145/2568225.2568263
https://doi.org/10.1145/3338906.3338977
https://doi.org/10.1109/SEmotion.2019.00013
https://doi.org/10.1109/SEmotion.2019.00013
https://doi.org/10.1109/SANER.2017.7884612
https://doi.org/10.1145/3239235.3267434
https://doi.org/10.1145/3239235.3267434
https://doi.org/10.5220/0005830604640471
https://doi.org/10.5220/0005830604640471
https://doi.org/10.1007/978-3-030-15538-4_4
https://doi.org/10.1109/NAturaLiSE.2013.6611717

STUDIES SELECTED FOR THE LITERATURE REVIEW 237

International Requirements Engineering Conference Workshops, RE 2017 Work-
shops, Lisbon, Portugal, September 4-8, 2017. IEEE Computer Society, 367–371.
https://doi.org/10.1109/REW.2017.58

[P31] Giuseppe Destefanis, Marco Ortu, David Bowes, Michele Marchesi, and Roberto
Tonelli. 2018. On measuring affects of github issues’ commenters. In Pro-
ceedings of the 3rd International Workshop on Emotion Awareness in Software
Engineering, SEmotion@ICSE 2018, Gothenburg, Sweden, June 2, 2018, An-
drew Begel, Alexander Serebrenik, and Daniel Graziotin (Eds.). ACM, 14–19.
https://doi.org/10.1145/3194932.3194936

[P32] Giuseppe Destefanis, Marco Ortu, Steve Counsell, Stephen Swift, Michele March-
esi, and Roberto Tonelli. 2016. Software development: do good manners matter?
PeerJ Comput. Sci. 2 (2016), e73. https://doi.org/10.7717/peerj-cs.73

[P33] V. T. Dhinakaran, R. Pulle, N. Ajmeri, and P. K. Murukannaiah. 2018. App
Review Analysis Via Active Learning: Reducing Supervision Effort without Com-
promising Classification Accuracy. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). 170–181. https://doi.org/10.1109/RE.2018.
00026

[P34] Jin Ding, Hailong Sun, Xu Wang, and Xudong Liu. 2018. Entity-level sentiment
analysis of issue comments. In Proceedings of the 3rd International Workshop on
Emotion Awareness in Software Engineering, SEmotion@ICSE 2018, Gothenburg,
Sweden, June 2, 2018, Andrew Begel, Alexander Serebrenik, and Daniel Graziotin
(Eds.). ACM, 7–13. https://doi.org/10.1145/3194932.3194935

[P35] Vinicius H. S. Durelli, Rafael Serapilha Durelli, André Takeshi Endo, Elder Cirilo,
Washington Luiz, and Leonardo C. da Rocha. 2018. Please please me: does the
presence of test cases influence mobile app users’ satisfaction?. In Proceedings of
the XXXII Brazilian Symposium on Software Engineering, SBES 2018, Sao Carlos,
Brazil, September 17-21, 2018, Uirá Kulesza (Ed.). ACM, 132–141. https:
//doi.org/10.1145/3266237.3266272

[P36] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2017.
Confusion Detection in Code Reviews. In 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017. IEEE Computer Society, 549–553. https://doi.org/10.1109/
ICSME.2017.40

[P37] Alaa Mustafa El-Halees. 2014. Software Usability Evaluation Using Opinion Min-
ing. J. Softw. 9, 2 (2014), 343–349. https://doi.org/10.4304/jsw.9.2.
343-349

[P38] Hassan Fazayeli, Sharifah Mashita Syed-Mohamad, and Nur Shazwani Md Akhir.
2019. Towards Auto-labelling Issue Reports for Pull-Based Software Development
using Text Mining Approach. Procedia Computer Science 161 (2019), 585 –
592. https://doi.org/10.1016/j.procs.2019.11.160 The Fifth Information
Systems International Conference, 23-24 July 2019, Surabaya, Indonesia.

https://doi.org/10.1109/REW.2017.58
https://doi.org/10.1145/3194932.3194936
https://doi.org/10.7717/peerj-cs.73
https://doi.org/10.1109/RE.2018.00026
https://doi.org/10.1109/RE.2018.00026
https://doi.org/10.1145/3194932.3194935
https://doi.org/10.1145/3266237.3266272
https://doi.org/10.1145/3266237.3266272
https://doi.org/10.1109/ICSME.2017.40
https://doi.org/10.1109/ICSME.2017.40
https://doi.org/10.4304/jsw.9.2.343-349
https://doi.org/10.4304/jsw.9.2.343-349
https://doi.org/10.1016/j.procs.2019.11.160

238 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P39] Isabella Ferreira, Kate Stewart, Daniel M. Germán, and Bram Adams. 2019. A lon-
gitudinal study on the maintainers’ sentiment of a large scale open source ecosys-
tem. In Proceedings of the 4th International Workshop on Emotion Awareness
in Software Engineering, SEmotion@ICSE 2019, Montreal, QC, Canada, May 28,
2019. IEEE / ACM, 17–22. https://doi.org/10.1109/SEmotion.2019.00011

[P40] Jennifer Ferreira, Denis Dennehy, Jaganath Babu, and Kieran Conboy. 2019. Win-
ning of Hearts and Minds: Integrating Sentiment Analytics into the Analysis of
Contradictions. In Digital Transformation for a Sustainable Society in the 21st
Century - 18th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society,
I3E 2019, Trondheim, Norway, September 18-20, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11701), Ilias O. Pappas, Patrick Mikalef, Yo-
gesh K. Dwivedi, Letizia Jaccheri, John Krogstie, and Matti Mäntymäki (Eds.).
Springer, 392–403. https://doi.org/10.1007/978-3-030-29374-1_32

[P41] Jennifer Ferreira, Michael Glynn, David Hunt, Jaganath Babu, Denis Dennehy,
and Kieran Conboy. 2019. Sentiment analysis of open source communities: an
exploratory study. In Proceedings of the 15th International Symposium on Open
Collaboration, OpenSym 2019, Skövde, Sweden, August 20-22, 2019, Björn Lun-
dell, Jonas Gamalielsson, Lorraine Morgan, and Gregorio Robles (Eds.). ACM,
20:1–20:5. https://doi.org/10.1145/3306446.3340816

[P42] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason I. Hong, and Norman M.
Sadeh. 2013. Why people hate your app: making sense of user feedback in a mo-
bile app store. In The 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013,
Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Ra-
jesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy (Eds.).
ACM, 1276–1284. https://doi.org/10.1145/2487575.2488202

[P43] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On
using machine learning to identify knowledge in API reference documentation.
In Proceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ES-
EC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Du-
mas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 109–119.
https://doi.org/10.1145/3338906.3338943

[P44] Daviti Gachechiladze, Filippo Lanubile, Nicole Novielli, and Alexander Serebrenik.
2017. Anger and Its Direction in Collaborative Software Development. In 39th
IEEE/ACM International Conference on Software Engineering: New Ideas and
Emerging Technologies Results Track, ICSE-NIER 2017, Buenos Aires, Argentina,
May 20-28, 2017. IEEE Computer Society, 11–14. https://doi.org/10.1109/
ICSE-NIER.2017.18

[P45] Cuiyun Gao, Jichuan Zeng, David Lo, Chin-Yew Lin, Michael R. Lyu, and Irwin
King. 2018. INFAR: insight extraction from app reviews. In Proceedings of the
2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE

https://doi.org/10.1109/SEmotion.2019.00011
https://doi.org/10.1007/978-3-030-29374-1_32
https://doi.org/10.1145/3306446.3340816
https://doi.org/10.1145/2487575.2488202
https://doi.org/10.1145/3338906.3338943
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1109/ICSE-NIER.2017.18

STUDIES SELECTED FOR THE LITERATURE REVIEW 239

2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens,
Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 904–907. https:
//doi.org/10.1145/3236024.3264595

[P46] Cuiyun Gao, Wujie Zheng, Yuetang Deng, David Lo, Jichuan Zeng, Michael R.
Lyu, and Irwin King. 2019. Emerging app issue identification from user feedback:
experience on WeChat. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Mon-
treal, QC, Canada, May 25-31, 2019, Helen Sharp and Mike Whalen (Eds.). IEEE
/ ACM, 279–288. https://doi.org/10.1109/ICSE-SEIP.2019.00040

[P47] David García, Marcelo Serrano Zanetti, and Frank Schweitzer. 2013. The Role of
Emotions in Contributors Activity: A Case Study on the GENTOO Community.
In 2013 International Conference on Cloud and Green Computing, Karlsruhe,
Germany, September 30 - October 2, 2013. IEEE Computer Society, 410–417.
https://doi.org/10.1109/CGC.2013.71

[P48] Xiaodong Gu and Sunghun Kim. 2015. "What Parts of Your Apps are Loved by
Users?" (T). In 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B. Cohen,
Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 760–770.
https://doi.org/10.1109/ASE.2015.57

[P49] Emitza Guzman. 2013. Visualizing emotions in software development projects.
In 2013 First IEEE Working Conference on Software Visualization (VISSOFT),
Eindhoven, The Netherlands, September 27-28, 2013, Alexandru Telea, Andreas
Kerren, and Andrian Marcus (Eds.). IEEE Computer Society, 1–4. https://
doi.org/10.1109/VISSOFT.2013.6650529

[P50] Emitza Guzman, Rana Alkadhi, and Norbert Seyff. 2017. An exploratory study
of Twitter messages about software applications. Requir. Eng. 22, 3 (2017),
387–412. https://doi.org/10.1007/s00766-017-0274-x

[P51] Emitza Guzman, Omar Aly, and Bernd Bruegge. 2015. Retrieving Diverse Opin-
ions from App Reviews. In 2015 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2015, Beijing, China, October 22-
23, 2015. IEEE Computer Society, 21–30. https://doi.org/10.1109/ESEM.
2015.7321214

[P52] Emitza Guzman, David Azócar, and Yang Li. 2014. Sentiment analysis of com-
mit comments in GitHub: an empirical study. In 11th Working Conference on
Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014,
Hyderabad, India, Premkumar T. Devanbu, Sung Kim, and Martin Pinzger (Eds.).
ACM, 352–355. https://doi.org/10.1145/2597073.2597118

[P53] Emitza Guzman, Padma Bhuvanagiri, and Bernd Bruegge. 2014. FAVe: Visual-
izing User Feedback for Software Evolution. In Second IEEE Working Conference
on Software Visualization, VISSOFT 2014, Victoria, BC, Canada, September 29-
30, 2014, Houari A. Sahraoui, Andy Zaidman, and Bonita Sharif (Eds.). IEEE
Computer Society, 167–171. https://doi.org/10.1109/VISSOFT.2014.33

https://doi.org/10.1145/3236024.3264595
https://doi.org/10.1145/3236024.3264595
https://doi.org/10.1109/ICSE-SEIP.2019.00040
https://doi.org/10.1109/CGC.2013.71
https://doi.org/10.1109/ASE.2015.57
https://doi.org/10.1109/VISSOFT.2013.6650529
https://doi.org/10.1109/VISSOFT.2013.6650529
https://doi.org/10.1007/s00766-017-0274-x
https://doi.org/10.1109/ESEM.2015.7321214
https://doi.org/10.1109/ESEM.2015.7321214
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1109/VISSOFT.2014.33

240 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P54] Emitza Guzman and Bernd Bruegge. 2013. Towards emotional awareness in soft-
ware development teams. In Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, Bertrand Meyer, Luciano Baresi, and Mira Mezini (Eds.). ACM, 671–674.
https://doi.org/10.1145/2491411.2494578

[P55] Emitza Guzman, Muhammad El-Haliby, and Bernd Bruegge. 2015. Ensemble
Methods for App Review Classification: An Approach for Software Evolution
(N). In 30th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B. Cohen,
Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 771–776.
https://doi.org/10.1109/ASE.2015.88

[P56] Emitza Guzman, Muhammad El-Haliby, and Bernd Bruegge. 2015. Ensemble
Methods for App Review Classification: An Approach for Software Evolution
(N). In 30th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B. Cohen,
Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 771–776.
https://doi.org/10.1109/ASE.2015.88

[P57] Emitza Guzman, Mohamed Ibrahim, and Martin Glinz. 2017. A Little Bird Told
Me: Mining Tweets for Requirements and Software Evolution. In 25th IEEE In-
ternational Requirements Engineering Conference, RE 2017, Lisbon, Portugal,
September 4-8, 2017, Ana Moreira, João Araújo, Jane Hayes, and Barbara Paech
(Eds.). IEEE Computer Society, 11–20. https://doi.org/10.1109/RE.2017.
88

[P58] Emitza Guzman and Walid Maalej. 2014. How Do Users Like This Feature?
A Fine Grained Sentiment Analysis of App Reviews. In IEEE 22nd International
Requirements Engineering Conference, RE 2014, Karlskrona, Sweden, August 25-
29, 2014, Tony Gorschek and Robyn R. Lutz (Eds.). IEEE Computer Society,
153–162. https://doi.org/10.1109/RE.2014.6912257

[P59] Majid Hatamian, Jetzabel M. Serna, and Kai Rannenberg. 2019. Revealing the
unrevealed: Mining smartphone users privacy perception on app markets. Comput.
Secur. 83 (2019), 332–353. https://doi.org/10.1016/j.cose.2019.02.010

[P60] Leonard Hoon, Miguel Angel Rodriguez-García, Rajesh Vasa, Rafael Valencia-
García, and Jean-Guy Schneider. 2016. App Reviews: Breaking the User and
Developer Language Barrier. In Trends and Applications in Software Engineering,
Jezreel Mejia, Mirna Munoz, Álvaro Rocha, and Jose Calvo-Manzano (Eds.).
Springer International Publishing, Cham, 223–233.

[P61] Hanyang Hu, Shaowei Wang, Cor-Paul Bezemer, and Ahmed E. Hassan. 2019.
Studying the consistency of star ratings and reviews of popular free hybrid Android
and iOS apps. Empir. Softw. Eng. 24, 1 (2019), 7–32. https://doi.org/10.
1007/s10664-018-9617-6

https://doi.org/10.1145/2491411.2494578
https://doi.org/10.1109/ASE.2015.88
https://doi.org/10.1109/ASE.2015.88
https://doi.org/10.1109/RE.2017.88
https://doi.org/10.1109/RE.2017.88
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1016/j.cose.2019.02.010
https://doi.org/10.1007/s10664-018-9617-6
https://doi.org/10.1007/s10664-018-9617-6

STUDIES SELECTED FOR THE LITERATURE REVIEW 241

[P62] Yi Huang, Chunyang Chen, Zhenchang Xing, Tian Lin, and Yang Liu. 2018.
Tell them apart: distilling technology differences from crowd-scale comparison
discussions. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-
7, 2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM,
214–224. https://doi.org/10.1145/3238147.3238208

[P63] Johannes Huebner, Remo Manuel Frey, Christian Ammendola, Elgar Fleisch, and
Alexander Ilic. 2018. What People Like in Mobile Finance Apps: An Analysis of
User Reviews. In Proceedings of the 17th International Conference on Mobile and
Ubiquitous Multimedia, MUM 2018, Cairo, Egypt, November 25-28, 2018, Slim
Abdennadher and Florian Alt (Eds.). ACM, 293–304. https://doi.org/10.
1145/3282894.3282895

[P64] Syed Fatiul Huq, Ali Zafar Sadiq, and Kazi Sakib. 2019. Understanding the
Effect of Developer Sentiment on Fix-Inducing Changes: An Exploratory Study
on GitHub Pull Requests. In 26th Asia-Pacific Software Engineering Conference,
APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019. IEEE, 514–521. https:
//doi.org/10.1109/APSEC48747.2019.00075

[P65] Claudia Iacob, Shamal Faily, and Rachel Harrison. 2016. MARAM: Tool Support
for Mobile App Review Management. In Proceedings of the 8th EAI International
Conference on Mobile Computing, Applications and Services, MobiCASE 2016,
Cambridge, UK, November 30 - December 01, 2016, Fahim Kawsar, Pei Zhang,
and Mirco Musolesi (Eds.). ACM / ICST, 42–50. https://doi.org/10.4108/
eai.30-11-2016.2266941

[P66] Muhammad Touseef Ikram, Naveed Anwer Butt, and Muhammad Tanvir Afzal.
2016. Open source software adoption evaluation through feature level sentiment
analysis using Twitter data. Turkish Journal of Electrical Engineering & Computer
Sciences 24, 5 (2016), 4481–4496.

[P67] Nasif Imtiaz, Justin Middleton, Peter Girouard, and Emerson R. Murphy-Hill.
2018. Sentiment and politeness analysis tools on developer discussions are un-
reliable, but so are people. In Proceedings of the 3rd International Workshop on
Emotion Awareness in Software Engineering, SEmotion@ICSE 2018, Gothenburg,
Sweden, June 2, 2018, Andrew Begel, Alexander Serebrenik, and Daniel Graziotin
(Eds.). ACM, 55–61. https://doi.org/10.1145/3194932.3194938

[P68] Md Rakibul Islam, Md Kauser Ahmmed, and Minhaz F. Zibran. 2019. MarValous:
machine learning based detection of emotions in the valence-arousal space in
software engineering text. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, Chih-
Cheng Hung and George A. Papadopoulos (Eds.). ACM, 1786–1793. https:
//doi.org/10.1145/3297280.3297455

[P69] Md Rakibul Islam and Minhaz F. Zibran. 2016. Exploration and Exploitation of
Developers’ Sentimental Variations in Software Engineering. Int. J. Softw. Innov.
4, 4 (2016), 35–55. https://doi.org/10.4018/IJSI.2016100103

https://doi.org/10.1145/3238147.3238208
https://doi.org/10.1145/3282894.3282895
https://doi.org/10.1145/3282894.3282895
https://doi.org/10.1109/APSEC48747.2019.00075
https://doi.org/10.1109/APSEC48747.2019.00075
https://doi.org/10.4108/eai.30-11-2016.2266941
https://doi.org/10.4108/eai.30-11-2016.2266941
https://doi.org/10.1145/3194932.3194938
https://doi.org/10.1145/3297280.3297455
https://doi.org/10.1145/3297280.3297455
https://doi.org/10.4018/IJSI.2016100103

242 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P70] Md Rakibul Islam and Minhaz F. Zibran. 2016. Towards understanding and ex-
ploiting developers’ emotional variations in software engineering. In 14th IEEE
International Conference on Software Engineering Research, Management and
Applications, SERA 2016, Towson, MD, USA, June 8-10, 2016, Yeong-Tae Song
(Ed.). IEEE Computer Society, 185–192. https://doi.org/10.1109/SERA.
2016.7516145

[P71] Md Rakibul Islam and Minhaz F. Zibran. 2017. A Comparison of Dictionary
Building Methods for Sentiment Analysis in Software Engineering Text. In 2017
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2017, Toronto, ON, Canada, November 9-10, 2017, Ayse
Bener, Burak Turhan, and Stefan Biffl (Eds.). IEEE Computer Society, 478–479.
https://doi.org/10.1109/ESEM.2017.67

[P72] Md Rakibul Islam and Minhaz F. Zibran. 2018. A comparison of software en-
gineering domain specific sentiment analysis tools. In 25th International Confer-
ence on Software Analysis, Evolution and Reengineering, SANER 2018, Cam-
pobasso, Italy, March 20-23, 2018, Rocco Oliveto, Massimiliano Di Penta,
and David C. Shepherd (Eds.). IEEE Computer Society, 487–491. https:
//doi.org/10.1109/SANER.2018.8330245

[P73] Md Rakibul Islam and Minhaz F. Zibran. 2018. DEVA: sensing emotions in
the valence arousal space in software engineering text. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France,
April 09-13, 2018, Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir
(Eds.). ACM, 1536–1543. https://doi.org/10.1145/3167132.3167296

[P74] Md Rakibul Islam and Minhaz F. Zibran. 2018. SentiStrength-SE: Exploiting
domain specificity for improved sentiment analysis in software engineering text.
J. Syst. Softw. 145 (2018), 125–146. https://doi.org/10.1016/j.jss.2018.
08.030

[P75] S. Jamroonsilp and N. Prompoon. 2013. Analyzing software reviews for soft-
ware quality-based ranking. In 2013 10th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Tech-
nology. 1–6. https://doi.org/10.1109/ECTICon.2013.6559593

[P76] Nishant Jha and Anas Mahmoud. 2017. MARC: A Mobile Application Review
Classifier. In Joint Proceedings of REFSQ-2017 Workshops, Doctoral Symposium,
Research Method Track, and Poster Track co-located with the 22nd Interna-
tional Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2017), Essen, Germany, February 27, 2017 (CEUR Workshop Proceed-
ings, Vol. 1796), Eric Knauss, Angelo Susi, David Ameller, Daniel M. Berry,
Fabiano Dalpiaz, Maya Daneva, Marian Daun, Oscar Dieste, Peter Forbrig, Ed-
uard C. Groen, Andrea Herrmann, Jennifer Horkoff, Fitsum Meshesha Kifetew,
Marite Kirikova, Alessia Knauss, Patrick Maeder, Fabio Massacci, Cristina Palo-
mares, Jolita Ralyté, Ahmed Seffah, Alberto Siena, and Bastian Tenbergen (Eds.).
CEUR-WS.org. http://ceur-ws.org/Vol-1796/poster-paper-1.pdf

https://doi.org/10.1109/SERA.2016.7516145
https://doi.org/10.1109/SERA.2016.7516145
https://doi.org/10.1109/ESEM.2017.67
https://doi.org/10.1109/SANER.2018.8330245
https://doi.org/10.1109/SANER.2018.8330245
https://doi.org/10.1145/3167132.3167296
https://doi.org/10.1016/j.jss.2018.08.030
https://doi.org/10.1016/j.jss.2018.08.030
https://doi.org/10.1109/ECTICon.2013.6559593
http://ceur-ws.org/Vol-1796/poster-paper-1.pdf

STUDIES SELECTED FOR THE LITERATURE REVIEW 243

[P77] Nishant Jha and Anas Mahmoud. 2018. Using frame semantics for classifying
and summarizing application store reviews. Empir. Softw. Eng. 23, 6 (2018),
3734–3767. https://doi.org/10.1007/s10664-018-9605-x

[P78] Nishant Jha and Anas Mahmoud. 2019. Mining non-functional requirements
from App store reviews. Empir. Softw. Eng. 24, 6 (2019), 3659–3695. https:
//doi.org/10.1007/s10664-019-09716-7

[P79] He Jiang, Jingxuan Zhang, Xiaochen Li, Zhilei Ren, David Lo, Xindong Wu,
and Zhongxuan Luo. 2019. Recommending New Features from Mobile App
Descriptions. ACM Trans. Softw. Eng. Methodol. 28, 4 (2019), 22:1–22:29.
https://doi.org/10.1145/3344158

[P80] Wei Jiang, Haibin Ruan, Li Zhang, Philip Lew, and Jing Jiang. 2014. For User-
Driven Software Evolution: Requirements Elicitation Derived from Mining Online
Reviews. In Advances in Knowledge Discovery and Data Mining - 18th Pacific-Asia
Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014. Proceedings, Part
II (Lecture Notes in Computer Science, Vol. 8444), Vincent S. Tseng, Tu Bao Ho,
Zhi-Hua Zhou, Arbee L. P. Chen, and Hung-Yu Kao (Eds.). Springer, 584–595.
https://doi.org/10.1007/978-3-319-06605-9_48

[P81] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Serebrenik.
2017. On negative results when using sentiment analysis tools for software en-
gineering research. Empir. Softw. Eng. 22, 5 (2017), 2543–2584. https:
//doi.org/10.1007/s10664-016-9493-x

[P82] Francisco Jurado and Pilar Rodríguez Marín. 2015. Sentiment Analysis in mon-
itoring software development processes: An exploratory case study on GitHub’s
project issues. J. Syst. Softw. 104 (2015), 82–89. https://doi.org/10.1016/
j.jss.2015.02.055

[P83] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella.
2019. Ticket Tagger: Machine Learning Driven Issue Classification. In 2019 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2019,
Cleveland, OH, USA, September 29 - October 4, 2019. IEEE, 406–409. https:
//doi.org/10.1109/ICSME.2019.00070

[P84] A. Kaur, A. P. Singh, G. S. Dhillon, and D. Bisht. 2018. Emotion Mining and
Sentiment Analysis in Software Engineering Domain. In 2018 Second International
Conference on Electronics, Communication and Aerospace Technology (ICECA).
1170–1173. https://doi.org/10.1109/ICECA.2018.8474619

[P85] Swetha Keertipati, Bastin Tony Roy Savarimuthu, and Sherlock A. Licorish. 2016.
Approaches for prioritizing feature improvements extracted from app reviews. In
Proceedings of the 20th International Conference on Evaluation and Assessment in
Software Engineering, EASE 2016, Limerick, Ireland, June 01 - 03, 2016, Sarah
Beecham, Barbara A. Kitchenham, and Stephen G. MacDonell (Eds.). ACM,
33:1–33:6. https://doi.org/10.1145/2915970.2916003

https://doi.org/10.1007/s10664-018-9605-x
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1145/3344158
https://doi.org/10.1007/978-3-319-06605-9_48
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1016/j.jss.2015.02.055
https://doi.org/10.1016/j.jss.2015.02.055
https://doi.org/10.1109/ICSME.2019.00070
https://doi.org/10.1109/ICSME.2019.00070
https://doi.org/10.1109/ICECA.2018.8474619
https://doi.org/10.1145/2915970.2916003

244 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P86] Javed Ali Khan, Yuchen Xie, Lin Liu, and Lijie Wen. 2019. Analysis of
Requirements-Related Arguments in User Forums. In 27th IEEE International
Requirements Engineering Conference, RE 2019, Jeju Island, Korea (South),
September 23-27, 2019, Daniela E. Damian, Anna Perini, and Seok-Won Lee
(Eds.). IEEE, 63–74. https://doi.org/10.1109/RE.2019.00018

[P87] Nadeem Al Kilani, Rami Tailakh, and Abualsoud Hanani. 2019. Automatic Clas-
sification of Apps Reviews for Requirement Engineering: Exploring the Customers
Need from Healthcare Applications. In Sixth International Conference on Social
Networks Analysis, Management and Security, SNAMS 2019, Granada, Spain,
October 22-25, 2019, Mohammad A. Alsmirat and Yaser Jararweh (Eds.). IEEE,
541–548. https://doi.org/10.1109/SNAMS.2019.8931820

[P88] Binil Kuriachan and Nargis Pervin. 2018. ALDA: An Aggregated LDA for Polarity
Enhanced Aspect Identification Technique in Mobile App Domain. In Designing for
a Digital and Globalized World - 13th International Conference, DESRIST 2018,
Chennai, India, June 3-6, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10844), Samir Chatterjee, Kaushik Dutta, and Rangaraja P. Sundarraj (Eds.).
Springer, 187–204. https://doi.org/10.1007/978-3-319-91800-6_13

[P89] Zijad Kurtanovic and Walid Maalej. 2017. Automatically Classifying Functional
and Non-functional Requirements Using Supervised Machine Learning. In 25th
IEEE International Requirements Engineering Conference, RE 2017, Lisbon, Por-
tugal, September 4-8, 2017, Ana Moreira, João Araújo, Jane Hayes, and Barbara
Paech (Eds.). IEEE Computer Society, 490–495. https://doi.org/10.1109/
RE.2017.82

[P90] Zijad Kurtanovic and Walid Maalej. 2017. Mining User Rationale from Software
Reviews. In 25th IEEE International Requirements Engineering Conference, RE
2017, Lisbon, Portugal, September 4-8, 2017, Ana Moreira, João Araújo, Jane
Hayes, and Barbara Paech (Eds.). IEEE Computer Society, 61–70. https://
doi.org/10.1109/RE.2017.86

[P91] Marc J. Lanovaz and Bram Adams. 2019. Comparing the Communication Tone
and Responses of Users and Developers in Two R Mailing Lists: Measuring
Positive and Negative Emails. IEEE Softw. 36, 5 (2019), 46–50. https:
//doi.org/10.1109/MS.2019.2922949

[P92] W. Leopairote, A. Surarerks, and N. Prompoon. 2013. Evaluating software quality
in use using user reviews mining. In The 2013 10th International Joint Conference
on Computer Science and Software Engineering (JCSSE). 257–262. https:
//doi.org/10.1109/JCSSE.2013.6567355

[P93] Chuanyi Li, Liguo Huang, Jidong Ge, Bin Luo, and Vincent Ng. 2018. Automati-
cally classifying user requests in crowdsourcing requirements engineering. J. Syst.
Softw. 138 (2018), 108–123. https://doi.org/10.1016/j.jss.2017.12.028

[P94] Jing Li, Aixin Sun, and Zhenchang Xing. 2018. To Do or Not To Do: Distill
crowdsourced negative caveats to augment api documentation. J. Assoc. Inf. Sci.
Technol. 69, 12 (2018), 1460–1475. https://doi.org/10.1002/asi.24067

https://doi.org/10.1109/RE.2019.00018
https://doi.org/10.1109/SNAMS.2019.8931820
https://doi.org/10.1007/978-3-319-91800-6_13
https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1109/MS.2019.2922949
https://doi.org/10.1109/MS.2019.2922949
https://doi.org/10.1109/JCSSE.2013.6567355
https://doi.org/10.1109/JCSSE.2013.6567355
https://doi.org/10.1016/j.jss.2017.12.028
https://doi.org/10.1002/asi.24067

STUDIES SELECTED FOR THE LITERATURE REVIEW 245

[P95] Ruiyin Li, Peng Liang, Chen Yang, Georgios Digkas, Alexander Chatzigeorgiou,
and Zhuang Xiong. 2019. Automatic Identification of Assumptions from the
Hibernate Developer Mailing List. In 26th Asia-Pacific Software Engineering Con-
ference, APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019. IEEE, 394–401.
https://doi.org/10.1109/APSEC48747.2019.00060

[P96] Sherlock Licorish and Stephen MacDonell. 2014. Relating IS developers’ attitudes
to engagement. ACIS.

[P97] Sherlock A. Licorish and Stephen G. MacDonell. 2018. Exploring the links between
software development task type, team attitudes and task completion performance:
Insights from the Jazz repository. Inf. Softw. Technol. 97 (2018), 10–25. https:
//doi.org/10.1016/j.infsof.2017.12.005

[P98] Sherlock A. Licorish, Bastin Tony Roy Savarimuthu, and Swetha Keertipati. 2017.
Attributes that Predict which Features to Fix: Lessons for App Store Mining. In
Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE 2017, Karlskrona, Sweden, June 15-16, 2017,
Emilia Mendes, Steve Counsell, and Kai Petersen (Eds.). ACM, 108–117. https:
//doi.org/10.1145/3084226.3084246

[P99] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele
Lanza. 2019. Pattern-based mining of opinions in Q&A websites. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle
(Eds.). IEEE / ACM, 548–559. https://doi.org/10.1109/ICSE.2019.00066

[P100] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. 2018. Sentiment analysis for software engineering:
how far can we go?. In Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.).
ACM, 94–104. https://doi.org/10.1145/3180155.3180195

[P101] Xueqing Liu, Yue Leng, Wei Yang, Chengxiang Zhai, and Tao Xie. 2018. Min-
ing Android App Descriptions for Permission Requirements Recommendation. In
26th IEEE International Requirements Engineering Conference, RE 2018, Banff,
AB, Canada, August 20-24, 2018, Guenther Ruhe, Walid Maalej, and Daniel
Amyot (Eds.). IEEE Computer Society, 147–158. https://doi.org/10.1109/
RE.2018.00024

[P102] Yuandong Liu, Yanwei Li, Yanhui Guo, and Miao Zhang. 2016. Stratify Mobile
App Reviews: E-LDA Model Based on Hot "Entity" Discovery. In 12th Interna-
tional Conference on Signal-Image Technology & Internet-Based Systems, SITIS
2016, Naples, Italy, November 28 - December 1, 2016, Kokou Yétongnon, Al-
bert Dipanda, Richard Chbeir, Giuseppe De Pietro, and Luigi Gallo (Eds.). IEEE
Computer Society, 581–588. https://doi.org/10.1109/SITIS.2016.97

https://doi.org/10.1109/APSEC48747.2019.00060
https://doi.org/10.1016/j.infsof.2017.12.005
https://doi.org/10.1016/j.infsof.2017.12.005
https://doi.org/10.1145/3084226.3084246
https://doi.org/10.1145/3084226.3084246
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1109/RE.2018.00024
https://doi.org/10.1109/RE.2018.00024
https://doi.org/10.1109/SITIS.2016.97

246 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P103] Yuzhou Liu, Lei Liu, Huaxiao Liu, and Shanquan Gao. 2020. Combining goal
model with reviews for supporting the evolution of apps. IET Softw. 14, 1 (2020),
39–49. https://doi.org/10.1049/iet-sen.2018.5192

[P104] Yuzhou Liu, Lei Liu, Huaxiao Liu, and Suji Li. 2019. Information Recommendation
Based on Domain Knowledge in App Descriptions for Improving the Quality of
Requirements. IEEE Access 7 (2019), 9501–9514. https://doi.org/10.1109/
ACCESS.2019.2891543

[P105] Yuzhou Liu, Lei Liu, Huaxiao Liu, and Xiaoyu Wang. 2018. Analyzing reviews
guided by App descriptions for the software development and evolution. J. Softw.
Evol. Process. 30, 12 (2018). https://doi.org/10.1002/smr.2112

[P106] Mengmeng Lu and Peng Liang. 2017. Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews. In Proceedings of the 21st In-
ternational Conference on Evaluation and Assessment in Software Engineering,
EASE 2017, Karlskrona, Sweden, June 15-16, 2017, Emilia Mendes, Steve Coun-
sell, and Kai Petersen (Eds.). ACM, 344–353. https://doi.org/10.1145/
3084226.3084241

[P107] Washington Luiz, Felipe Viegas, Rafael Odon de Alencar, Fernando Mourão, Thi-
ago Salles, Dárlinton B. F. Carvalho, Marcos André Gonçalves, and Leonardo C.
da Rocha. 2018. A Feature-Oriented Sentiment Rating for Mobile App Reviews.
In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine Champin, Fabien L.
Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 1909–1918.
https://doi.org/10.1145/3178876.3186168

[P108] Walid Maalej, Zijad Kurtanovic, Hadeer Nabil, and Christoph Stanik. 2016. On
the automatic classification of app reviews. Requir. Eng. 21, 3 (2016), 311–331.
https://doi.org/10.1007/s00766-016-0251-9

[P109] Rungroj Maipradit, Hideaki Hata, and Kenichi Matsumoto. 2019. Sentiment Clas-
sification Using N-Gram Inverse Document Frequency and Automated Machine
Learning. IEEE Softw. 36, 5 (2019), 65–70. https://doi.org/10.1109/MS.
2019.2919573

[P110] Mika Mäntylä, Bram Adams, Giuseppe Destefanis, Daniel Graziotin, and Marco
Ortu. 2016. Mining valence, arousal, and dominance: possibilities for detecting
burnout and productivity?. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016,
Miryung Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 247–258. https:
//doi.org/10.1145/2901739.2901752

[P111] Mika V. Mäntylä, Nicole Novielli, Filippo Lanubile, Maëlick Claes, and Miikka
Kuutila. 2017. Bootstrapping a lexicon for emotional arousal in software engi-
neering. (2017), 198–202. https://doi.org/10.1109/MSR.2017.47

https://doi.org/10.1049/iet-sen.2018.5192
https://doi.org/10.1109/ACCESS.2019.2891543
https://doi.org/10.1109/ACCESS.2019.2891543
https://doi.org/10.1002/smr.2112
https://doi.org/10.1145/3084226.3084241
https://doi.org/10.1145/3084226.3084241
https://doi.org/10.1145/3178876.3186168
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1109/MS.2019.2919573
https://doi.org/10.1109/MS.2019.2919573
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1109/MSR.2017.47

STUDIES SELECTED FOR THE LITERATURE REVIEW 247

[P112] Daniel Martens and Timo Johann. 2017. On the Emotion of Users in App Reviews.
In 2nd IEEE/ACM International Workshop on Emotion Awareness in Software
Engineering, SEmotion@ICSE 2017, Buenos Aires, Argentina, May 21, 2017. IEEE
Computer Society, 8–14. https://doi.org/10.1109/SEmotion.2017.6

[P113] Benjamin Matthies. 2016. Feature-based sentiment analysis of codified project
knowledge: A dictionary approach. In Pacific Asia Conference On Information
Systems (PACIS). Association For Information System.

[P114] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E. Hassan. 2016. An-
alyzing and automatically labelling the types of user issues that are raised in
mobile app reviews. Empir. Softw. Eng. 21, 3 (2016), 1067–1106. https:
//doi.org/10.1007/s10664-015-9375-7

[P115] Iván Tactuk Mercado, Nuthan Munaiah, and Andrew Meneely. 2016. The im-
pact of cross-platform development approaches for mobile applications from the
user’s perspective. In Proceedings of the International Workshop on App Mar-
ket Analytics, WAMA@SIGSOFT FSE, Seattle, WA, USA, November 14, 2016,
Meiyappan Nagappan, Federica Sarro, and Emad Shihab (Eds.). ACM, 43–49.
https://doi.org/10.1145/2993259.2993268

[P116] Montassar Ben Messaoud, Ilyes Jenhani, Nermine Ben Jemaa, and Mo-
hamed Wiem Mkaouer. 2019. A Multi-label Active Learning Approach for Mobile
App User Review Classification. In Knowledge Science, Engineering and Man-
agement - 12th International Conference, KSEM 2019, Athens, Greece, Au-
gust 28-30, 2019, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 11775), Christos Douligeris, Dimitris Karagiannis, and Dimitris Apostolou
(Eds.). Springer, 805–816. https://doi.org/10.1007/978-3-030-29551-6_
71

[P117] Itzel Morales-Ramirez, Fitsum Meshesha Kifetew, and Anna Perini. 2019. Speech-
acts based analysis for requirements discovery from online discussions. Inf. Syst.
86 (2019), 94–112. https://doi.org/10.1016/j.is.2018.08.003

[P118] Nuthan Munaiah, Benjamin S. Meyers, Cecilia O. Alm, Andrew Meneely,
Pradeep K. Murukannaiah, Emily Prud’hommeaux, Josephine Wolff, and Yang
Yu. 2017. Natural Language Insights from Code Reviews that Missed a Vulnera-
bility. In Engineering Secure Software and Systems, Eric Bodden, Mathias Payer,
and Elias Athanasopoulos (Eds.). Springer International Publishing, Cham, 70–
86.

[P119] Sergio Muñoz, Oscar Araque, Antonio F. Llamas, and Carlos Angel Iglesias. 2018.
A Cognitive Agent for Mining Bugs Reports, Feature Suggestions and Sentiment
in a Mobile Application Store. In 4th International Conference on Big Data In-
novations and Applications, Innovate-Data 2018, Barcelona, Spain, August 6-8,
2018. IEEE, 17–24. https://doi.org/10.1109/Innovate-Data.2018.00010

[P120] Alessandro Murgia, Marco Ortu, Parastou Tourani, Bram Adams, and Serge De-
meyer. 2018. An exploratory qualitative and quantitative analysis of emotions in

https://doi.org/10.1109/SEmotion.2017.6
https://doi.org/10.1007/s10664-015-9375-7
https://doi.org/10.1007/s10664-015-9375-7
https://doi.org/10.1145/2993259.2993268
https://doi.org/10.1007/978-3-030-29551-6_71
https://doi.org/10.1007/978-3-030-29551-6_71
https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1109/Innovate-Data.2018.00010

248 STUDIES SELECTED FOR THE LITERATURE REVIEW

issue report comments of open source systems. Empir. Softw. Eng. 23, 1 (2018),
521–564. https://doi.org/10.1007/s10664-017-9526-0

[P121] Maleknaz Nayebi, Henry Cho, and Guenther Ruhe. 2018. App store mining is
not enough for app improvement. Empir. Softw. Eng. 23, 5 (2018), 2764–2794.
https://doi.org/10.1007/s10664-018-9601-1

[P122] M. Nayebi, M. Marbouti, R. Quapp, F. Maurer, and G. Ruhe. 2017. Crowd-
sourced Exploration of Mobile App Features: A Case Study of the Fort Mc-
Murray Wildfire. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering: Software Engineering in Society Track (ICSE-SEIS). 57–66.
https://doi.org/10.1109/ICSE-SEIS.2017.8

[P123] Krishna Neupane, Kabo Cheung, and Yi Wang. 2019. EmoD: An End-to-End
Approach for Investigating Emotion Dynamics in Software Development. In 2019
IEEE International Conference on Software Maintenance and Evolution, ICSME
2019, Cleveland, OH, USA, September 29 - October 4, 2019. IEEE, 252–256.
https://doi.org/10.1109/ICSME.2019.00038

[P124] Mariaclaudia Nicolai, Luca Pascarella, Fabio Palomba, and Alberto Bacchelli.
2019. Healthcare Android apps: a tale of the customers’ perspective. In Pro-
ceedings of the 3rd ACM SIGSOFT International Workshop on App Market
Analytics, WAMA@ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 27,
2019, Federica Sarro and Maleknaz Nayebi (Eds.). ACM, 33–39. https:
//doi.org/10.1145/3340496.3342758

[P125] E. Noei, F. Zhang, and Y. Zou. 2019. Too Many User-Reviews, What Should App
Developers Look at First? IEEE Transactions on Software Engineering (2019),
1–1. https://doi.org/10.1109/TSE.2019.2893171

[P126] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. 2015. The challenges of
sentiment detection in the social programmer ecosystem. In Proceedings of the
7th International Workshop on Social Software Engineering, SSE 2015, Bergamo,
Italy, September 1, 2015, Imed Hammouda and Alberto Sillitti (Eds.). ACM,
33–40. https://doi.org/10.1145/2804381.2804387

[P127] Nicole Novielli, Fabio Calefato, and Filippo Lanubile. 2018. A gold standard for
emotion annotation in stack overflow. In Proceedings of the 15th International
Conference on Mining Software Repositories, MSR 2018, Gothenburg, Sweden,
May 28-29, 2018, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM,
14–17. https://doi.org/10.1145/3196398.3196453

[P128] Nicole Novielli, Daniela Girardi, and Filippo Lanubile. 2018. A benchmark study
on sentiment analysis for software engineering research. In Proceedings of the 15th
International Conference on Mining Software Repositories, MSR 2018, Gothen-
burg, Sweden, May 28-29, 2018, Andy Zaidman, Yasutaka Kamei, and Emily Hill
(Eds.). ACM, 364–375. https://doi.org/10.1145/3196398.3196403

https://doi.org/10.1007/s10664-017-9526-0
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.1109/ICSE-SEIS.2017.8
https://doi.org/10.1109/ICSME.2019.00038
https://doi.org/10.1145/3340496.3342758
https://doi.org/10.1145/3340496.3342758
https://doi.org/10.1109/TSE.2019.2893171
https://doi.org/10.1145/2804381.2804387
https://doi.org/10.1145/3196398.3196453
https://doi.org/10.1145/3196398.3196403

STUDIES SELECTED FOR THE LITERATURE REVIEW 249

[P129] Marco Ortu, Bram Adams, Giuseppe Destefanis, Parastou Tourani, Michele
Marchesi, and Roberto Tonelli. 2015. Are Bullies More Productive? Empiri-
cal Study of Affectiveness vs. Issue Fixing Time. In 12th IEEE/ACM Working
Conference on Mining Software Repositories, MSR 2015, Florence, Italy, May 16-
17, 2015, Massimiliano Di Penta, Martin Pinzger, and Romain Robbes (Eds.).
IEEE Computer Society, 303–313. https://doi.org/10.1109/MSR.2015.35

[P130] Marco Ortu, Giuseppe Destefanis, Steve Counsell, Stephen Swift, Roberto Tonelli,
and Michele Marchesi. 2016. Arsonists or Firefighters? Affectiveness in Agile
Software Development. In Agile Processes, in Software Engineering, and Extreme
Programming - 17th International Conference, XP 2016, Edinburgh, UK, May
24-27, 2016, Proceedings (Lecture Notes in Business Information Processing,
Vol. 251), Helen Sharp and Tracy Hall (Eds.). Springer, 144–155. https://
doi.org/10.1007/978-3-319-33515-5_12

[P131] Marco Ortu, Tracy Hall, Michele Marchesi, Roberto Tonelli, David Bowes, and
Giuseppe Destefanis. 2018. Mining Communication Patterns in Software Devel-
opment: A GitHub Analysis. In Proceedings of the 14th International Conference
on Predictive Models and Data Analytics in Software Engineering, PROMISE
2018, Oulu, Finland, October 10, 2018, Burak Turhan, Ayse Tosun, and Shane
McIntosh (Eds.). ACM, 70–79. https://doi.org/10.1145/3273934.3273943

[P132] Marco Ortu, Michele Marchesi, and Roberto Tonelli. 2019. Empirical analysis
of affect of merged issues on GitHub. In Proceedings of the 4th International
Workshop on Emotion Awareness in Software Engineering, SEmotion@ICSE 2019,
Montreal, QC, Canada, May 28, 2019. IEEE / ACM, 46–48. https://doi.org/
10.1109/SEmotion.2019.00017

[P133] Marco Ortu, Alessandro Murgia, Giuseppe Destefanis, Parastou Tourani, Roberto
Tonelli, Michele Marchesi, and Bram Adams. 2016. The emotional side of software
developers in JIRA. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, Miryung
Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 480–483. https://doi.
org/10.1145/2901739.2903505

[P134] Nitish Pandey, Debarshi Kumar Sanyal, Abir Hudait, and Amitava Sen. 2017.
Automated classification of software issue reports using machine learning tech-
niques: an empirical study. Innov. Syst. Softw. Eng. 13, 4 (2017), 279–297.
https://doi.org/10.1007/s11334-017-0294-1

[P135] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Vis-
aggio, Gerardo Canfora, and Harald C. Gall. 2015. How can i improve my
app? Classifying user reviews for software maintenance and evolution. In 2015
IEEE International Conference on Software Maintenance and Evolution, ICSME
2015, Bremen, Germany, September 29 - October 1, 2015, Rainer Koschke,
Jens Krinke, and Martin P. Robillard (Eds.). IEEE Computer Society, 281–290.
https://doi.org/10.1109/ICSM.2015.7332474

https://doi.org/10.1109/MSR.2015.35
https://doi.org/10.1007/978-3-319-33515-5_12
https://doi.org/10.1007/978-3-319-33515-5_12
https://doi.org/10.1145/3273934.3273943
https://doi.org/10.1109/SEmotion.2019.00017
https://doi.org/10.1109/SEmotion.2019.00017
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1007/s11334-017-0294-1
https://doi.org/10.1109/ICSM.2015.7332474

250 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P136] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visag-
gio, Gerardo Canfora, and Harald C. Gall. 2016. ARdoc: app reviews develop-
ment oriented classifier. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and
Zhendong Su (Eds.). ACM, 1023–1027. https://doi.org/10.1145/2950290.
2983938

[P137] Amol Patwardhan. 2017. Sentiment Identification for Collaborative, Geograph-
ically Dispersed, Cross-Functional Software Development Teams. In 3rd IEEE
International Conference on Collaboration and Internet Computing, CIC 2017,
San Jose, CA, USA, October 15-17, 2017. IEEE Computer Society, 20–26.
https://doi.org/10.1109/CIC.2017.00014

[P138] Rajshakhar Paul, Amiangshu Bosu, and Kazi Zakia Sultana. 2019. Expressions
of Sentiments during Code Reviews: Male vs. Female. In 26th IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER 2019,
Hangzhou, China, February 24-27, 2019, Xinyu Wang, David Lo, and Emad Shi-
hab (Eds.). IEEE, 26–37. https://doi.org/10.1109/SANER.2019.8667987

[P139] Zhenlian Peng, Jian Wang, Keqing He, and Mingdong Tang. 2016. An Approach
of Extracting Feature Requests from App Reviews. In Collaborate Computing:
Networking, Applications and Worksharing - 12th International Conference, Col-
laborateCom 2016, Beijing, China, November 10-11, 2016, Proceedings (Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, Vol. 201), Shangguang Wang and Ao Zhou (Eds.).
Springer, 312–323. https://doi.org/10.1007/978-3-319-59288-6_28

[P140] K. Phetrungnapha and T. Senivongse. 2019. Classification of Mobile Application
User Reviews for Generating Tickets on Issue Tracking System. In 2019 12th
International Conference on Information Communication Technology and System
(ICTS). 229–234. https://doi.org/10.1109/ICTS.2019.8850962

[P141] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and
emotion: sentiment analysis of security discussions on GitHub. In 11th Working
Conference on Mining Software Repositories, MSR 2014, Proceedings, May 31 -
June 1, 2014, Hyderabad, India, Premkumar T. Devanbu, Sung Kim, and Martin
Pinzger (Eds.). ACM, 348–351. https://doi.org/10.1145/2597073.2597117

[P142] Roxana Lisette Quintanilla Portugal and Julio Cesar Sampaio do Prado Leite.
2018. Usability Related Qualities Through Sentiment Analysis. In 1st International
Workshop on Affective Computing for Requirements Engineering, AffectRE@RE
2018, Banff, AB, Canada, August 21, 2018, Davide Fucci, Nicole Novielli, and
Emitza Guzman (Eds.). IEEE, 20–26. https://doi.org/10.1109/AffectRE.
2018.00010

[P143] Zhenzheng Qian, Beijun Shen, Wenkai Mo, and Yuting Chen. 2016. SatiIndicator:
Leveraging User Reviews to Evaluate User Satisfaction of SourceForge Projects. In
40th IEEE Annual Computer Software and Applications Conference, COMPSAC

https://doi.org/10.1145/2950290.2983938
https://doi.org/10.1145/2950290.2983938
https://doi.org/10.1109/CIC.2017.00014
https://doi.org/10.1109/SANER.2019.8667987
https://doi.org/10.1007/978-3-319-59288-6_28
https://doi.org/10.1109/ICTS.2019.8850962
https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1109/AffectRE.2018.00010
https://doi.org/10.1109/AffectRE.2018.00010

STUDIES SELECTED FOR THE LITERATURE REVIEW 251

2016, Atlanta, GA, USA, June 10-14, 2016. IEEE Computer Society, 93–102.
https://doi.org/10.1109/COMPSAC.2016.183

[P144] Zhenzheng Qian, Chengcheng Wan, and Yuting Chen. 2016. Evaluating quality-
in-use of FLOSS through analyzing user reviews. In 17th IEEE/ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, SNPD 2016, Shanghai, China, May 30 -
June 1, 2016, Yihai Chen (Ed.). IEEE Computer Society, 547–552. https:
//doi.org/10.1109/SNPD.2016.7515956

[P145] Mohammad Masudur Rahman, Chanchal K. Roy, and Iman Keivanloo. 2015. Rec-
ommending insightful comments for source code using crowdsourced knowledge.
In 15th IEEE International Working Conference on Source Code Analysis and Ma-
nipulation, SCAM 2015, Bremen, Germany, September 27-28, 2015, Michael W.
Godfrey, David Lo, and Foutse Khomh (Eds.). IEEE Computer Society, 81–90.
https://doi.org/10.1109/SCAM.2015.7335404

[P146] Romain Robbes and Andrea Janes. 2019. Leveraging small software engineering
data sets with pre-trained neural networks. In Proceedings of the 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019, Anita Sarma and
Leonardo Murta (Eds.). IEEE / ACM, 29–32. https://doi.org/10.1109/
ICSE-NIER.2019.00016

[P147] William N. Robinson, Tianjie Deng, and Zirun Qi. 2016. Developer Behavior and
Sentiment from Data Mining Open Source Repositories. In 49th Hawaii Interna-
tional Conference on System Sciences, HICSS 2016, Koloa, HI, USA, January
5-8, 2016, Tung X. Bui and Ralph H. Sprague Jr. (Eds.). IEEE Computer Society,
3729–3738. https://doi.org/10.1109/HICSS.2016.465

[P148] Mateus F. Santos, Josemar Alves Caetano, Johnatan Oliveira, and Humberto
T. Marques Neto. 2018. Analyzing The Impact Of Feedback In GitHub On
The Software Developer’s Mood. In The 30th International Conference on Soft-
ware Engineering and Knowledge Engineering, Hotel Pullman, Redwood City,
California, USA, July 1-3, 2018, Óscar Mortágua Pereira (Ed.). KSI Research
Inc. and Knowledge Systems Institute Graduate School, 445–444. https:
//doi.org/10.18293/SEKE2018-153

[P149] Hitesh Sapkota, Pradeep K. Murukannaiah, and Yi Wang. 2020. A network-
centric approach for estimating trust between open source software developers.
PLOS ONE 14, 12 (12 2020), 1–30. https://doi.org/10.1371/journal.
pone.0226281

[P150] Simone Scalabrino, Gabriele Bavota, Barbara Russo, Massimiliano Di Penta, and
Rocco Oliveto. 2019. Listening to the Crowd for the Release Planning of Mobile
Apps. IEEE Trans. Software Eng. 45, 1 (2019), 68–86. https://doi.org/10.
1109/TSE.2017.2759112

https://doi.org/10.1109/COMPSAC.2016.183
https://doi.org/10.1109/SNPD.2016.7515956
https://doi.org/10.1109/SNPD.2016.7515956
https://doi.org/10.1109/SCAM.2015.7335404
https://doi.org/10.1109/ICSE-NIER.2019.00016
https://doi.org/10.1109/ICSE-NIER.2019.00016
https://doi.org/10.1109/HICSS.2016.465
https://doi.org/10.18293/SEKE2018-153
https://doi.org/10.18293/SEKE2018-153
https://doi.org/10.1371/journal.pone.0226281
https://doi.org/10.1371/journal.pone.0226281
https://doi.org/10.1109/TSE.2017.2759112
https://doi.org/10.1109/TSE.2017.2759112

252 STUDIES SELECTED FOR THE LITERATURE REVIEW

[P151] Ryan Serva, Zachary R. Senzer, Lori L. Pollock, and K. Vijay-Shanker. 2015.
Automatically Mining Negative Code Examples from Software Developer Q &
A Forums. In 30th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE Workshops 2015, Lincoln, NE, USA, November 9-
13, 2015. IEEE Computer Society, 115–122. https://doi.org/10.1109/ASEW.
2015.10

[P152] Faiz Ali Shah, Yevhenii Sabanin, and Dietmar Pfahl. 2016. Feature-based evalua-
tion of competing apps. In Proceedings of the International Workshop on App
Market Analytics, WAMA@SIGSOFT FSE, Seattle, WA, USA, November 14,
2016, Meiyappan Nagappan, Federica Sarro, and Emad Shihab (Eds.). ACM,
15–21. https://doi.org/10.1145/2993259.2993267

[P153] Faiz Ali Shah, Kairit Sirts, and Dietmar Pfahl. 2019. Using app reviews for
competitive analysis: tool support. In Proceedings of the 3rd ACM SIGSOFT
International Workshop on App Market Analytics, WAMA@ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 27, 2019, Federica Sarro and Maleknaz Nayebi
(Eds.). ACM, 40–46. https://doi.org/10.1145/3340496.3342756

[P154] Jingyi Shen, Olga Baysal, and M. Omair Shafiq. 2019. Evaluating the Performance
of Machine Learning Sentiment Analysis Algorithms in Software Engineering. In
2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Com-
puting, Intl Conf on Cyber Science and Technology Congress, DASC/PiCom/CB-
DCom/CyberSciTech 2019, Fukuoka, Japan, August 5-8, 2019. IEEE, 1023–1030.
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00185

[P155] Lin Shi, Celia Chen, Qing Wang, Shoubin Li, and Barry W. Boehm. 2017. Un-
derstanding feature requests by leveraging fuzzy method and linguistic analysis.
In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE
Computer Society, 440–450. https://doi.org/10.1109/ASE.2017.8115656

[P156] Navdeep Singh and Paramvir Singh. 2017. How Do Code Refactoring Ac-
tivities Impact Software Developers’ Sentiments? - An Empirical Investiga-
tion Into GitHub Commits. In 24th Asia-Pacific Software Engineering Confer-
ence, APSEC 2017, Nanjing, China, December 4-8, 2017, Jian Lv, He Jason
Zhang, Mike Hinchey, and Xiao Liu (Eds.). IEEE Computer Society, 648–653.
https://doi.org/10.1109/APSEC.2017.79

[P157] Vinayak Sinha, Alina Lazar, and Bonita Sharif. 2016. Analyzing developer sen-
timent in commit logs. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22,
2016, Miryung Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 520–523.
https://doi.org/10.1145/2901739.2903501

[P158] Ekaterina Skriptsova, Elizaveta Voronova, Elizaveta Danilova, and Alina Bakhi-
tova. 2019. Analysis of Newcomers Activity in Communicative Posts on GitHub.

https://doi.org/10.1109/ASEW.2015.10
https://doi.org/10.1109/ASEW.2015.10
https://doi.org/10.1145/2993259.2993267
https://doi.org/10.1145/3340496.3342756
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00185
https://doi.org/10.1109/ASE.2017.8115656
https://doi.org/10.1109/APSEC.2017.79
https://doi.org/10.1145/2901739.2903501

STUDIES SELECTED FOR THE LITERATURE REVIEW 253

In Digital Transformation and Global Society, Daniel A. Alexandrov, Alexander V.
Boukhanovsky, Andrei V. Chugunov, Yury Kabanov, Olessia Koltsova, and Ilya
Musabirov (Eds.). Springer International Publishing, Cham, 452–460.

[P159] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki,
Corrado Aaron Visaggio, Gerardo Canfora, and Harald C. Gall. 2016. What would
users change in my app? summarizing app reviews for recommending software
changes. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, Novem-
ber 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su
(Eds.). ACM, 499–510. https://doi.org/10.1145/2950290.2950299

[P160] Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massimiliano Di
Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development Emails Content
Analyzer: Intention Mining in Developer Discussions (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015, Myra B. Cohen, Lars Grunske, and Michael
Whalen (Eds.). IEEE Computer Society, 12–23. https://doi.org/10.1109/
ASE.2015.12

[P161] Rodrigo R. G. Souza and Bruno Silva. 2017. Sentiment analysis of Travis CI
builds. In Proceedings of the 14th International Conference on Mining Software
Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017, Jesús M.
González-Barahona, Abram Hindle, and Lin Tan (Eds.). IEEE Computer Society,
459–462. https://doi.org/10.1109/MSR.2017.27

[P162] Christoph Stanik, Marlo Häring, and Walid Maalej. 2019. Classifying Multilingual
User Feedback using Traditional Machine Learning and Deep Learning. In 27th
IEEE International Requirements Engineering Conference Workshops, RE 2019
Workshops, Jeju Island, Korea (South), September 23-27, 2019. IEEE, 220–226.
https://doi.org/10.1109/REW.2019.00046

[P163] Parastou Tourani and Bram Adams. 2016. The Impact of Human Discussions
on Just-in-Time Quality Assurance: An Empirical Study on OpenStack and
Eclipse. In IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Vol-
ume 1. IEEE Computer Society, 189–200. https://doi.org/10.1109/SANER.
2016.113

[P164] Parastou Tourani, Yujuan Jiang, and Bram Adams. 2014. Monitoring senti-
ment in open source mailing lists: exploratory study on the apache ecosystem. In
Proceedings of 24th Annual International Conference on Computer Science and
Software Engineering, CASCON 2014, Markham, Ontario, Canada, 3-5 Novem-
ber, 2014, Joanna Ng, Jin Li, and Ken Wong (Eds.). IBM / ACM, 34–44.
http://dl.acm.org/citation.cfm?id=2735528

[P165] Andrew Truelove, Farah Naz Chowdhury, Omprakash Gnawali, and Moham-
mad Amin Alipour. 2019. Topics of concern: identifying user issues in re-
views of IoT apps and devices. In Proceedings of the 1st International Work-
shop on Software Engineering Research & Practices for the Internet of Things,

https://doi.org/10.1145/2950290.2950299
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/ASE.2015.12
https://doi.org/10.1109/MSR.2017.27
https://doi.org/10.1109/REW.2019.00046
https://doi.org/10.1109/SANER.2016.113
https://doi.org/10.1109/SANER.2016.113
http://dl.acm.org/citation.cfm?id=2735528

254 STUDIES SELECTED FOR THE LITERATURE REVIEW

SERP4IoT@ICSE 2019, Montreal, QC, Canada, May 27, 2019. IEEE / ACM,
33–40. https://doi.org/10.1109/SERP4IoT.2019.00013

[P166] G. Uddin and F. Khomh. 2019. Automatic Mining of Opinions Expressed About
APIs in Stack Overflow. IEEE Transactions on Software Engineering (2019), 1–1.
https://doi.org/10.1109/TSE.2019.2900245

[P167] Gias Uddin, Foutse Khomh, and Chanchal K. Roy. 2020. Mining API usage
scenarios from stack overflow. Inf. Softw. Technol. 122 (2020), 106277. https:
//doi.org/10.1016/j.infsof.2020.106277

[P168] Phong Minh Vu, Hung Viet Pham, Tam The Nguyen, and Tung Thanh Nguyen.
2015. Tool Support for Analyzing Mobile App Reviews. In 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015, Myra B. Cohen, Lars Grunske, and Michael
Whalen (Eds.). IEEE Computer Society, 789–794. https://doi.org/10.1109/
ASE.2015.101

[P169] Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. 2019. Extracting
API tips from developer question and answer websites. In Proceedings of the
16th International Conference on Mining Software Repositories, MSR 2019, 26-
27 May 2019, Montreal, Canada, Margaret-Anne D. Storey, Bram Adams, and
Sonia Haiduc (Eds.). IEEE / ACM, 321–332. https://doi.org/10.1109/MSR.
2019.00058

[P170] Yi Wang. 2019. Emotions Extracted from Text vs. True Emotions-An Empirical
Evaluation in SE Context. In 34th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15,
2019. IEEE, 230–242. https://doi.org/10.1109/ASE.2019.00031

[P171] Yue Wang, Hongning Wang, and Hui Fang. 2017. Extracting User-Reported Mo-
bile Application Defects from Online Reviews. In 2017 IEEE International Con-
ference on Data Mining Workshops, ICDM Workshops 2017, New Orleans, LA,
USA, November 18-21, 2017, Raju Gottumukkala, Xia Ning, Guozhu Dong, Vijay
Raghavan, Srinivas Aluru, George Karypis, Lucio Miele, and Xindong Wu (Eds.).
IEEE Computer Society, 422–429. https://doi.org/10.1109/ICDMW.2017.61

[P172] Karl Werder. 2018. The evolution of emotional displays in open source soft-
ware development teams: an individual growth curve analysis. In Proceedings
of the 3rd International Workshop on Emotion Awareness in Software Engi-
neering, SEmotion@ICSE 2018, Gothenburg, Sweden, June 2, 2018, Andrew
Begel, Alexander Serebrenik, and Daniel Graziotin (Eds.). ACM, 1–6. https:
//doi.org/10.1145/3194932.3194934

[P173] Karl Werder and Sjaak Brinkkemper. 2018. MEME: toward a method for emotions
extraction from github. In Proceedings of the 3rd International Workshop on
Emotion Awareness in Software Engineering, SEmotion@ICSE 2018, Gothenburg,
Sweden, June 2, 2018, Andrew Begel, Alexander Serebrenik, and Daniel Graziotin
(Eds.). ACM, 20–24. https://doi.org/10.1145/3194932.3194941

https://doi.org/10.1109/SERP4IoT.2019.00013
https://doi.org/10.1109/TSE.2019.2900245
https://doi.org/10.1016/j.infsof.2020.106277
https://doi.org/10.1016/j.infsof.2020.106277
https://doi.org/10.1109/ASE.2015.101
https://doi.org/10.1109/ASE.2015.101
https://doi.org/10.1109/MSR.2019.00058
https://doi.org/10.1109/MSR.2019.00058
https://doi.org/10.1109/ASE.2019.00031
https://doi.org/10.1109/ICDMW.2017.61
https://doi.org/10.1145/3194932.3194934
https://doi.org/10.1145/3194932.3194934
https://doi.org/10.1145/3194932.3194941

STUDIES SELECTED FOR THE LITERATURE REVIEW 255

[P174] Colin Werner, Ze Shi Li, and Daniela E. Damian. 2019. Can a Machine Learn
Through Customer Sentiment?: A Cost-Aware Approach to Predict Support
Ticket Escalations. IEEE Softw. 36, 5 (2019), 38–45. https://doi.org/10.
1109/MS.2019.2923408

[P175] Colin Werner, Ze Shi Li, and Neil A. Ernst. 2019. What Can the Sentiment
of a Software Requirements Specification Document Tell Us?. In 27th IEEE In-
ternational Requirements Engineering Conference Workshops, RE 2019 Work-
shops, Jeju Island, Korea (South), September 23-27, 2019. IEEE, 106–107.
https://doi.org/10.1109/REW.2019.00022

[P176] Colin Werner, Gabriel Tapuc, Lloyd Montgomery, Diksha Sharma, Sanja Dodos,
and Daniela E. Damian. 2018. How Angry are Your Customers? Sentiment
Analysis of Support Tickets that Escalate. In 1st International Workshop on Af-
fective Computing for Requirements Engineering, AffectRE@RE 2018, Banff, AB,
Canada, August 21, 2018, Davide Fucci, Nicole Novielli, and Emitza Guzman
(Eds.). IEEE, 1–8. https://doi.org/10.1109/AffectRE.2018.00006

[P177] Grant Williams and Anas Mahmoud. 2017. Analyzing, Classifying, and In-
terpreting Emotions in Software Users’ Tweets. In 2nd IEEE/ACM Interna-
tional Workshop on Emotion Awareness in Software Engineering, SEmotion@ICSE
2017, Buenos Aires, Argentina, May 21, 2017. IEEE Computer Society, 2–7.
https://doi.org/10.1109/SEmotion.2017.1

[P178] Grant Williams and Anas Mahmoud. 2017. Mining Twitter Feeds for Software User
Requirements. In 25th IEEE International Requirements Engineering Conference,
RE 2017, Lisbon, Portugal, September 4-8, 2017, Ana Moreira, João Araújo,
Jane Hayes, and Barbara Paech (Eds.). IEEE Computer Society, 1–10. https:
//doi.org/10.1109/RE.2017.14

[P179] Bo Yang, Xinjie Wei, and Chao Liu. 2017. Sentiments Analysis in GitHub Reposi-
tories: An Empirical Study. In 24th Asia-Pacific Software Engineering Conference
Workshops, APSEC Workshops 2017, Nanjing, China, December 4-8, 2017. IEEE,
84–89. https://doi.org/10.1109/APSECW.2017.13

[P180] Huishi Yin and Dietmar Pfahl. 2017. A Method to Transform Automatically
Extracted Product Features into Inputs for Kano-Like Models. In Product-Focused
Software Process Improvement - 18th International Conference, PROFES 2017,
Innsbruck, Austria, November 29 - December 1, 2017, Proceedings (Lecture Notes
in Computer Science, Vol. 10611), Michael Felderer, Daniel Méndez Fernández,
Burak Turhan, Marcos Kalinowski, Federica Sarro, and Dietmar Winkler (Eds.).
Springer, 237–254. https://doi.org/10.1007/978-3-319-69926-4_17

[P181] Huishi Yin and Dietmar Pfahl. 2018. The OIRE Method - Overview and Initial
Validation. In 25th Asia-Pacific Software Engineering Conference, APSEC 2018,
Nara, Japan, December 4-7, 2018. IEEE, 1–10. https://doi.org/10.1109/
APSEC.2018.00014

https://doi.org/10.1109/MS.2019.2923408
https://doi.org/10.1109/MS.2019.2923408
https://doi.org/10.1109/REW.2019.00022
https://doi.org/10.1109/AffectRE.2018.00006
https://doi.org/10.1109/SEmotion.2017.1
https://doi.org/10.1109/RE.2017.14
https://doi.org/10.1109/RE.2017.14
https://doi.org/10.1109/APSECW.2017.13
https://doi.org/10.1007/978-3-319-69926-4_17
https://doi.org/10.1109/APSEC.2018.00014
https://doi.org/10.1109/APSEC.2018.00014

256 CHAPTER 7.

[P182] Yingying Zhang and Daqing Hou. 2013. Extracting problematic API features from
forum discussions. In IEEE 21st International Conference on Program Compre-
hension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. IEEE Computer
Society, 142–151. https://doi.org/10.1109/ICPC.2013.6613842

[P183] Lingling Zhao and Anping Zhao. 2019. Sentiment Analysis Based Requirement
Evolution Prediction. Future Internet 11, 2 (2019), 52. https://doi.org/10.
3390/fi11020052

[P184] Shenghua Zhou, S Thomas Ng, Sang Hoon Lee, Frank J Xu, and Yifan Yang.
2019. A domain knowledge incorporated text mining approach for capturing
user needs on BIM applications. Engineering, Construction and Architectural
Management (2019).

[P185] Yanzhen Zou, Changsheng Liu, Yong Jin, and Bing Xie. 2013. Assessing Software
Quality through Web Comment Search and Analysis. In Safe and Secure Software
Reuse - 13th International Conference on Software Reuse, ICSR 2013, Pisa, Italy,
June 18-20. Proceedings (Lecture Notes in Computer Science, Vol. 75), John M.
Favaro and Maurizio Morisio (Eds.). Springer, 208–223. https://doi.org/10.
1007/978-3-642-38977-1_14

https://doi.org/10.1109/ICPC.2013.6613842
https://doi.org/10.3390/fi11020052
https://doi.org/10.3390/fi11020052
https://doi.org/10.1007/978-3-642-38977-1_14
https://doi.org/10.1007/978-3-642-38977-1_14

257

Curriculum Vitae
Nathan Cassee was born in Eindhoven, the Netherlands. In 2016 he obtained his bachelor’s
degree in software engineering at Fontys University of Applied Science, and in 2019, his
masters in Computer Science and Engineering at Eindhoven University of Technology. In
2019, he started his PhD in Computer Science at Eindhoven University of Technology
under the supervision of Professor Serebrenik and dr. Novielli. Nathan’s research interest
is human aspects of software engineering, and in his doctoral thesis, he studied how the
expression of emotions and sentiment by software engineers affects software development.
After his PhD Nathan will start as a post-doctoral researcher at the University of Victoria
under the supervision of Professor Storey and dr. Ernst.

Titles in the IPA Dissertation Series since 2021

D. Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Science,
VU. 2021-02

P. Derakhshanfar. Carving Informa-
tion Sources to Drive Search-based Crash
Reproduction and Test Case Genera-
tion. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2021-03

K. Aslam. Deriving Behavioral Speci-
fications of Industrial Software Compo-
nents. Faculty of Mathematics and Com-
puter Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Science,
TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Program-
ming Environments for DSLs. Faculty

of Mathematics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Security Moni-
toring in Environments where Digital and
Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty of
Sciences, Department of Computer Sci-
ence, VU. 2022-07

J. Wagemaker. Extensions of (Concur-
rent) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-08

R. Janssen. Refinement and Partiality
for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-09

M. Laveaux. Accelerated Verifica-
tion of Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2022-10

S. Kochanthara. A Changing Land-
scape: On Safety & Open Source in Au-
tomated and Connected Driving. Faculty
of Mathematics and Computer Science,
TU/e. 2023-01

L.M. Ochoa Venegas. Break the
Code? Breaking Changes and Their Im-
pact on Software Evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2023-02

N. Yang. Logs and models in engineer-
ing complex embedded production soft-
ware systems. Faculty of Mathematics and
Computer Science, TU/e. 2023-03

J. Cao. An Independent Timing Analy-
sis for Credit-Based Shaping in Ethernet
TSN. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol Program-
ming. Faculty of Mathematics and Natu-
ral Sciences, UL. 2023-05

J. Smits. Strategic Language Workbench
Improvements. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2023-06

A. Arslanagić. Minimal Structures
for Program Analysis and Verification.
Faculty of Science and Engineering,
RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verification.
Faculty of Mathematics and Computer
Science, TU/e. 2023-08

S.A.M. Lathouwers. Exploring Annota-
tions for Deductive Verification. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2023-09

J.H. Stoel. Solving the Bank, Lightweight
Specification and Verification Techniques
for Enterprise Software. Faculty of
Mathematics and Computer Science,
TU/e. 2023-10

D.M. Groenewegen. WebDSL: Lin-
guistic Abstractions for Web Program-
ming. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2023-11

D.R. do Vale. On Semantical Methods for
Higher-Order Complexity Analysis. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2024-01

M.J.G. Olsthoorn. More Effective Test
Case Generation with Multiple Tribes
of AI. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2024-02

B. van den Heuvel. Correctly Com-
municating Software: Distributed, Asyn-
chronous, and Beyond. Faculty of Science
and Engineering, RUG. 2024-03

H.A. Hiep. New Foundations for Separa-
tion Logic. Faculty of Mathematics and
Natural Sciences, UL. 2024-04

C.E. Brandt. Test Amplification For and
With Developers. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2024-05

J.I. Hejderup. Fine-Grained Analysis
of Software Supply Chains. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2024-06

J. Jacobs. Guarantees by construc-
tion. Faculty of Science, Mathematics and
Computer Science, RU. 2024-07

O. Bunte. Cracking OIL: A Formal
Perspective on an Industrial DSL for
Modelling Control Software. Faculty
of Mathematics and Computer Science,
TU/e. 2024-08

R.J.A. Erkens. Automaton-based Tech-
niques for Optimized Term Rewriting.
Faculty of Mathematics and Computer
Science, TU/e. 2024-09

J.J.M. Martens. The Complexity of
Bisimilarity by Partition Refinement. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2024-10

L.J. Edixhoven. Expressive Specification
and Verification of Choreographies. Fac-
ulty of Science, OU. 2024-11

J.W.N. Paulus. On the Expres-
sivity of Typed Concurrent Calculi.
Faculty of Science and Engineering,
RUG. 2024-12

J. Denkers. Domain-Specific Languages
for Digital Printing Systems. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2024-13

L.H. Applis. Tool-Driven Quality Assur-

ance for Functional Programming and Ma-
chine Learning. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2024-14

P. Karkhanis. Driving the Future: Fa-
cilitating C-ITS Service Deployment for
Connected and Smart Roadways. Faculty
of Mathematics and Computer Science,
TU/e. 2024-15

N.W. Cassee. Sentiment in Software En-
gineering. Faculty of Mathematics and
Computer Science, TU/e. 2024-16

	Introduction
	Emotions & Sentiment
	Goal & Outline
	Theory
	Tools
	Practice
	Studies not included in this thesis

	Opinion Mining for Software Development
	Introduction
	Scope of Our Study
	Structure of the Chapter

	Related Work
	Secondary Studies of Opinion Mining in General Domains
	Secondary Studies of Opinion Mining in Software Development Activities

	Research Method
	Research Questions
	Relevant Study Identification
	Data Extraction and Analysis

	Results
	RQ1: In which software engineering activities has opinion mining been applied?
	RQ2: What publicly available opinion mining tools have been adopted/developed to support these activities?
	RQ3: How often do researchers evaluate the reliability of opinion mining tools when they adopt the tools out-of-the-box?
	RQ4: Which opinion mining techniques have been compared in terms of performance and in what contexts?
	RQ5: Which datasets are available for performance evaluation of opinion mining techniques in software-related contexts? How are they curated?
	RQ6: What are the concerns raised or the limitations encountered by researchers when using/customizing opinion mining techniques?

	Discussion
	Replicability of Selected Studies
	Impact of One-Round Snowballing

	Threats to Validity
	Conclusions
	Insights for Tool Adoption Practices
	Directions for Future Work

	Transformers and Meta-Tokenization in Sentiment Analysis for Software Engineering
	Introduction
	Methodology
	Tools & Datasets
	Evaluating tool performance

	Results
	Machine learning and Deep learning
	Meta-tokenization

	Devil's Advocate
	What process was used to label the items in the dataset? Could bias in the labeling influence the results? Could bias in train-test splits influence the results?
	Don't sentiment analysis tools already apply preprocessing techniques to handle non-natural language?

	Discussion
	Applying Sentiment Analysis Tools to Study Software Engineering
	Dataset creation and presence of non-natural language
	Benchmarking sentiment analysis tools

	Threats to Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Related Work
	Conclusion

	Sentiment of Technical Debt Security Questions on Stack Overflow: A Replication Study
	Introduction
	Related Work
	Methodology
	Data
	Sentiment Analysis Tools
	Analysis
	Availability of Data

	Results
	RQ4.1: What sentiments are expressed in security-related technical debt questions on Stack Overflow?
	RQ4.2: How does the sentiment contrast with the sentiment of non-technical debt security-related questions on Stack Overflow?
	RQ4.3: What are the underlying reasons as to why Senti4SD and BERT4SentiSE evaluate a SO question to have a different sentiment.

	Threats to validity
	Discussion
	Implications
	Conclusion

	Self-Admitted Technical Debt and Comments' Polarity: An Empirical Study
	Introduction
	Study Design
	Addressing RQ5.1: SATD content coding
	Addressing RQ5.2 and RQ5.3
	Addressing RQ5.4
	Addressing RQ5.5: Identifying Additional Details in SATD
	Survey Preparation and Sampling

	Study Results
	Survey Responses
	RQ5.1: What kind of problems do SATD annotations describe?
	RQ5.2: How do developers annotate SATD that they believe requires extra priority?
	RQ5.3: Do developers believe that the expression of negative sentiment in SATD is an acceptable practice?
	RQ5.4: How does the occurrence of negative sentiment vary across different kinds of SATD annotations?
	RQ5.5: To what extent do SATD annotations belonging to different categories contain additional details?

	Discussion
	Related Work
	Technical Debt and Self-Admitted Technical Debt
	Sentiment Analysis in Software Development

	Threats to Validity
	Conclusion

	Negativity and the Prioritization of Self-Admitted Technical Debt
	Introduction
	Methodology
	Choice of Research Method
	Experimental Design
	Data Analysis

	Results
	Demographics
	Negativity's Effect on Prioritization
	Perceptions and Self-Reported Behavior

	Discussion
	Threats to Validity
	Related Work
	Self-Admitted Technical Debt
	Sentiment in Software Engineering

	Conclusion

	Conclusion
	Findings
	Theory
	Tools
	Practice
	Limitations

	Future Research Directions
	On Sentiment and Emotions
	On Human Aspects in Software Engineering
	On Methodological Novelty

