
Noname manuscript No.
(will be inserted by the editor)

Negativity in Self-Admitted Technical Debt: How
Sentiment Influences Prioritization

Nathan Cassee · Neil Ernst · Nicole
Novielli · Alexander Serebrenik

Received: date / Accepted: date

Abstract Self-Admitted Technical Debt, or SATD, is a self-admission of tech-
nical debt present in a software system. The presence of SATD in software sys-
tems negatively affects developers, therefore, managing and addressing SATD
is crucial for software engineering. To effectively manage SATD, developers
need to estimate its priority and assess the effort required to fix the described
technical debt. About a quarter of descriptions of SATD in software systems
express some form of negativity or negative emotions when describing technical
debt. In this paper, we report on an experiment conducted with 59 respondents
to study whether negativity expressed in the description of SATD actually
affects the prioritization of SATD. The respondents are a mix of professional
developers and students, and in the experiment, we asked participants to pri-
oritize four vignettes: two expressing negativity and two expressing neutral
sentiment. To ensure the vignettes were realistic, they were based on existing
SATD extracted from a dataset. We find that negativity causes between one-
third and half of developers to prioritize SATD in which negativity is expressed
as having more priority. Developers affected by negativity when prioritizing
SATD are twice as likely to increase their estimation of urgency and 1.5 times
as likely to increase their estimation of importance and effort for SATD com-

Nathan Cassee
Eindhoven University of Technology, The Netherlands
E-mail: n.w.cassee@tue.nl

Neil Ernst
University of Victoria, Canada
E-mail: nernst@uvic.ca

Nicole Novielli
University of Bari, Italy
E-mail: nicole.novielli@uniba.it

Alexander Serebrenik
Eindhoven University of Technology, The Netherlands
E-mail: a.serebrenik@tue.nl

2 Nathan Cassee et al.

pared to the likelihood of decreasing these prioritization scores. Our findings
show how developers actively use negativity in SATD to determine how ur-
gently a particular instance of technical-debt should be addressed. However,
our study also describes a gap in the actions and belief of developers. Even if
33% to 50% use negativity to prioritize SATD, 67% of developers believe that
using negativity as a proxy for priority is unacceptable. Therefore, we would
not recommend using negativity as a proxy for priority. However, we also rec-
ognize it might be unavoidable that negativity is expressed by developers to
describe technical debt.

Keywords Self-Admitted Technical Debt · Software Engineering · Sentiment

1 Introduction

Technical Debt is used as a metaphor by developers to describe suboptimal im-
plementations that require future reimplementations to fix the existing imple-
mentation (Cunningham, 1992; Tom et al., 2013). Technical debt is pervasive
as a large number of developers is familiar, and even affected by, it (Lim et al.,
2012). The presence of technical debt in a system is known to have negative ef-
fects: it not only makes it more difficult to modify a software project (Wehaibi
et al., 2016), but also reduces the morale of developers working on a system
where technical debt is present (Besker et al., 2020).

Self-Admitted Technical Debt, or SATD, is a specific category of Technical
Debt. SATD is characterized by explicit admissions of developers indicating
the presence of technical debt (Potdar and Shihab, 2014). Both technical debt
and SATD have been extensively studied, including aspects of SATD such as
the automatic identification (Guo et al., 2021; Maldonado et al., 2017) or the
management and removal of SATD (Maldonado et al., 2017; Tan et al., 2021;
Zampetti et al., 2018, 2020). Specifically, we know that developers use SATD
to describe a wide range of technical issues (Cassee et al., 2022; Maldonado and
Shihab, 2015). In particular, existing taxonomies of SATD instances show that
developers tend to describe functional issues or poor implementation choices.

Sentiment is a construct used to categorize text into one of the three cat-
egories (Novielli and Serebrenik, 2023). Negative sentiment includes texts ex-
pressing negative emotions, while text has positive sentiment expressing pos-
itive emotions, and a text is considered neutral if it expresses no emotions.
The automatic classification of sentiment in software engineering texts has
been used to study many different aspects of software engineering (Lin et al.,
2022), such as in the code-review process (Singh and Singh, 2018), or on Stack
Overflow (Calefato et al., 2018; Swillus and Zaidman, 2023). Olsson et al.
(2021) found that the presence of technical debt, or design smells, can cause
developers to experience negative emotions. Furthermore, it has also been
found that in roughly 20% of SATD instances, negativity, or negative emo-
tions, are used to describe the SATD (Cassee et al., 2022). From the psy-
chological literature, we know that emotionally salient information is more
likely to capture attention in the working memory of the brain (Okon-Singer

Title Suppressed Due to Excessive Length 3

et al., 2015). Similarly, when it comes to issue resolution, previous work has
found that there appears to be a link between the expression of positive sen-
timent and a faster resolution of issues (Ortu et al., 2015; Sanei et al., 2021).
While Calefato et al. (2018) concluded that Stack Overflow questions that are
neutral, or in which no sentiment is expressed, are more likely to receive an
answer. Focusing on SATD, a quarter of the developers surveyed by Cassee
et al. (2022) stated that they use negative emotions to describe high-priority
SATD, and that they interpret negativity expressed in SATD as a proxy for
priority. Because there is often a gap between respondents’ beliefs, and their
actions (Barr, 2006), we want to understand whether expressions of negativity
in SATD influence prioritization. Therefore, we pose the following research
question:

RQ1: Do developers interpret technical debt annotated with negative source-
code comments as having a higher priority?

While there are many different ways to prioritize technical debt (Lenar-
duzzi et al., 2021) it is currently unknown whether expressions of negativity
influence the perception of the priority of technical debt. Because of how chal-
lenging effort estimation is (Molokken and Jorgensen, 2003), it is important
to understand how negativity influences the prioritization of technical debt. If
negativity influences prioritization, it might lead to unintended consequences,
as technical debt might be prioritized not because it is important or urgent
but because negativity has been used to describe it.

We use a vignette-based experimental design to address RQ1 (Aguinis and
Bradley, 2014). By purposefully selecting a realistic set of SATD instances,
creating variations of these SATD instances in which negativity is expressed,
and assigning them to participants we study the effect of negativity on
prioritization. We sampled respondents from open-source software mailing
lists and industrial contacts in the Eindhoven region of the Netherlands.

Based on the responses of 59 participants, we conclude that between 30%
to 50% of developers score the priority of technical debt as higher if negativity
is expressed in its description. Most importantly, even developers who self-
report that they are not influenced by negativity are more likely to increase
their estimation of the effort required to fix SATD if negativity is expressed.
Our results show that developers use SATD not just to describe technical issues
but also use negativity in descriptions of SATD as an additional dimension to
communicate priority.

2 Methodology

In this section, we describe the experiment conducted to understand whether
negativity influences the prioritization of SATD. First, we justify our choice to
use controlled experiments. Then, we describe the design of the experiment,

4 Nathan Cassee et al.

the instruments used in the experiment, and we explain the method used to
analyze the data.1

2.1 Choice of Research Method

In this section, we discuss several potential research methods that could be
used to understand the impact of negativity on priority using the framework
of Robillard et al. (2024), and we justify our choice to use a controlled ex-
periment. We discuss the potential alternatives to a controlled experiment,
our considerations, rationale, and the implications of our decision to use an
experiment.

Alternatives We first briefly describe the three alternatives we considered: A
controlled experiment, a Mining Software Repository (MSR) study, and an
interview. In a controlled experiment, we would ask participants to prioritize
different SATD instances, while for an MSR study, we would analyze whether
SATD in which negativity is expressed is removed quicker. Finally, in an in-
terview, we would ask participants about their past prioritization practices.

Considerations: The most important consideration informing our choice of
methodology is the expectation that any effect of negativity on the percep-
tion of priority might be relatively small. Previous correlational studies on the
impact of sentiment on software engineering report small effect sizes (Calefato
et al., 2018; Cheruvelil and da Silva, 2019; Olsson et al., 2021). Because of
these small effect sizes, we require a research method that gives us a high level
of control, allowing us to isolate and measure the effect of negativity. Further-
more, many factors influence prioritization, as prioritization of Technical Debt
is a complex process, and many factors influence how it is prioritized (Lenar-
duzzi et al., 2021). This will also limit the effect of a single factor, such as
the expression of negativity, on priority. Because of the relatively small effect
size, estimating the true effect of negativity on prioritization is more difficult:
Many confounding variables might influence the removal of SATD, and in fact,
even classifying whether the removal of SATD was purposeful is already chal-
lenging (Zampetti et al., 2018). The presence of confounding variables and the
noise introduced by potentially inaccurate classifications of removal has made
us decide to not use an MSR study.

The second consideration is the observation that human recollection is not
optimal which results in humans misremembering, especially when asked about
past events (Johnson et al., 1993; Raykov et al., 2023). For an interview study
or a survey, in which we ask participants about choices they made in the past
related to the prioritization of SATD this might be problematic. Similarly,
while we could ask about current prioritization practices, this still has the
downside that our questions would be hypothetical.

1 The code of the statistical modeling is available in a replication package at
https://doi.org/10.6084/m9.figshare.26863435.

Title Suppressed Due to Excessive Length 5

Implications: Because of these two considerations, we opt for controlled ex-
periments as research method to study the prioritization of SATD. The first
implication of our choice for controlled experiments is that we have a high
level of control (Stol and Fitzgerald, 2018; Storey et al., 2020). We can use
this control to account for as many relevant confounding variables that could
also influence prioritization as possible. However, the second implication
of our choice is reduced realism, as with any experimental study (Stol and
Fitzgerald, 2018). Asking respondents to prioritize SATD in an experimental
context is not very realistic. The context in which the respondents usually
prioritize SATD is likely not the experimental setup. Therefore, the effect we
observe in the experiments might not be the effect observed in the field, how-
ever, using an experimental set-up can be expected to allow us to understand
with certainty whether any effect exists.

2.2 Experimental Design:

For RQ1 we use a between-person experimental vignette design, where each
participant is only exposed to one-condition, according to the guidelines of
Aguinis and Bradley (2014). To maximize realism of the experiment the vi-
gnettes we show to participants are instances of SATD, each containing a
snippet of source code containing technical debt and a source code comment
describing the technical debt. We ask participants to score the priority of the
vignettes, and by experimentally varying whether negativity is expressed in the
source code comment describing the SATD, to investigate whether negativity
influences prioritization.
Operationalization of Priority: The concept of priority is quite a broad topic;
different respondents might interpret the meaning of priority differently. There-
fore, following existing guidelines (Aguinis and Bradley, 2014), we “split” the
concept of priority into three constructs: Urgency, Importance, and Effort.
Both urgency and importance are common constructs used to operational-
ize priority (Bellotti et al., 2004; Gavidia-Calderon et al., 2021; Middleton
et al., 2018), and effort is used to determine the cost of Technical Debt repay-
ment (Lenarduzzi et al., 2021).
Participant recruitment: The target population for the experiment are soft-
ware engineers, and to increase the response rate, we do not require any
minimum working experience. Because recruiting of participants for software
engineering studies is challenging, we use different channels to recruit par-
ticipants (Danilova et al., 2021). In particular, we posted the invitation to
participate in the experiment on a set of mailing lists previously used to re-
cruit software engineers (Cassee et al., 2022; Maldonado et al., 2017) and on
the social-media pages of the authors, as well as used convenience sampling
to invite developers at medium to large software companies in the Eindhoven
region of the Netherlands. To ensure that we did not burden the mailing lists,
we sent out invitations piecemeal, a few a day, and we only posted the call
to participate on active mailing lists. The Ethical Review Board of Eindhoven

6 Nathan Cassee et al.

University of Technology approved both the experiment and the recruitment
strategy.2
Instrument Design: Table 1 contains an overview of the questions as included
in the survey. The instrument is divided into three sections: The first sec-
tion lists the questions we ask for each vignette. To ensure the constructs
Effort, Urgency, and Importance were interpreted equally by all participants,
we provided the italicized definitions included in Table 1. The second section
contains a set of questions on the perception of participants about the usage of
negativity as a proxy for priority, and the third section contains questions on
participants’ demographics. The questions on perceptions and demographics
were placed at the end of the survey to prevent them from biasing partici-
pants (Steele and Aronson, 1995).

The demographic questions included in the survey are related to the respon-
dents’ age and working experience. We record working experience because open
and closed source developers are known to manage SATD differently (Zam-
petti et al., 2021). Experience can be defined in many different ways (Siegmund
et al., 2014), and for this experiment, we choose to re-use questions about ex-
perience from the Stack Overflow developer survey.3 We also ask respondents
to indicate their age as an open input question, following the recommendations
from Hughes et al. (2016). We record the age because age tends to influence
how people experience emotions (Yeung et al., 2011). Finally, we also expect
developer’s attitude towards the practice of using negativity as a proxy for
priority to influence prioritization. Therefore, we re-use the closed questions
from the study of Cassee et al. (2022), in which developers are asked about
their perceptions and beliefs about the usage of SATD as a proxy for priority.
The questions for each of the four vignettes were mandatory, while all other
questions were optional.
Vignette selection: For the experiment, the vignettes should be as realistic
as possible (Aguinis and Bradley, 2014). Therefore, as vignettes, we select
SATD instances from an existing dataset of SATD items. The dataset was
gathered by Maldonado et al. (2017), and we use the version of Cassee et al.
(2022) in which the SATD instances have been categorized based on the type
of problem described in the SATD. We select SATD instances from a single
category to minimize the risk that differences between SATD instances influ-
ence the results. The category we select is Poor Implementation Choices, the
most common SATD category, in which about 30% of the SATD instances ex-
press negativity. SATD in this category includes comments like ‘‘// TODO:
define constants for magic numbers’’.

We select four SATD instances from the dataset; we do not select any more
to reduce respondent fatigue and the odds of disengaging. Because the com-
ments in the dataset of Cassee et al. have already been labeled with sentiment
polarity, we select two comments that have been labeled as negative and two
comments that have been labeled as non-negative. The dataset of Cassee et

2 Reference: ERB2023MCS17
3 https://survey.stackoverflow.co/2022#overview

Title Suppressed Due to Excessive Length 7

Table 1: The questions and response options per question as included in the
experiment.

Question Response Type

Q1 How would you rate the Urgency of the listed code-
snippet? In this context we define urgency as whether
swift action is required to address the technical debt
item.

One of: Very low, Low,
Medium, High, Very high

Q2 How would you rate the Importance of the listed
code-snippet? In this context we define importance as
the impact of the technical debt item.

One of: Very low, Low,
Medium, High, Very high

Q3 How would you rate the Effort required to address
the listed code-snippet? In this context we define effort
as the amount of work required to address the technical
debt item.

One of: Very low, Low,
Medium, High, Very high

Perception (Re-used from Cassee et al. (2022)) Response type

Q4 When writing source code, how often do you
write source code comments indicating delayed or in-
tended work activities such as TODO, FIXME, hack,
workaround, etc.?

Never, Rarely (Less than
once a month), Sometimes
(Monthly), Often (Weekly),
Very often (Daily)

Q5 When authoring comments that describe a prob-
lem, how often do you write negative source-code com-
ments indicating delayed or intended work activities
such as TODO, FIXME, hack, workaround, etc.?

Never, Rarely (Less than
once a month), Sometimes
(Monthly), Often (Weekly),
Very often (Daily)

Q6 How often do you come across negative source-
code comments indicating delayed or intended work
activities such as TODO, FIXME, hack, workaround,
etc.?

Never, Rarely (Less than
once a month), Sometimes
(Monthly), Often (Weekly),
Very often (Daily)

Q7 While writing a comment describing an issue in
the source-code, I am more likely to write negative
comments for issues that I believe are more important.

Strongly disagree, Disagree,
Neutral, Agree, Strongly agree

Q8 Writing negative comments to assign extra priority
to issues in the source-code is an acceptable practice.

Strongly disagree, Disagree,
Neutral, Agree, Strongly agree

Q9 Whenever I come across a source-code comment
describing a problem that is particularly negative, I
interpret this as a more important issue than a source-
code comment describing a problem that is more neu-
tral.

Strongly disagree, Disagree,
Neutral, Agree, Strongly agree

Demographics Response type

Q10 What is your age? Open numerical input

Q11 Which of the following best describes your cur-
rent employment status?

One of: “Employed”, “Inde-
pendent contractor, freelancer
or self-employed”, “ Student”,
“Not employed”, “Prefer not
to say”, “Retired”

Q12 Which of the following best describes the code
you write outside of work? Select all that apply.

One or more of: “Contribute
to open-source software”,
“Hobby”, “Freelance/contract
work”, “School or academic
work”, “Bootstrapping a busi-
ness”, “I do not write code
outside of work”

Q13 How many years of programming experience do
you have?

Open numerical input

8 Nathan Cassee et al.

al. identifies three different sentiment classes in SATD: negative, non-negative,
and mixed. The mixed class, however, occurs in less than 2% of cases. Con-
sequently, we exclude the mixed class and only sample from the negative and
non-negative classes. Additionally, due to the negative connotations of tech-
nical debt, we expect a low number of positive instance (Cassee et al., 2022).
Therefore, we exclude these, focusing solely on negative versus non-negative
instances.

The selection of SATD instances is performed manually: we pay careful
attention to ensure that we select instances that are comprehensible and self-
contained, such that the respondents can understand them without becoming
fatigued or confused. Alternative generation: For the between-person design
of the experiment, we require that each of the four selected vignettes has two
variations: a neutral instance and a negative instance. One of the two vari-
ations can be randomly assigned to a participant. For each of the selected
vignettes, we create a manipulated variation expressing a different sentiment
polarity than the original. The two crucial requirements for these manipulated
instances are: The semantics of the original comment should be preserved, i.e.,
the alternative comment should describe the same problem as the original com-
ment, and the manipulated comment should express the required sentiment
polarity.

To generate manipulated comments we used ChatGPT.4 Through Chat-
GPT, we aim to reduce the risk that our own perception of what negativity
in SATD looks like influences manipulated alternatives we would draft our-
selves. We manually validate the comment generated by ChatGPT to ensure
the manipulated comment meets the previously listed requirements. For each
SATD instance, we prompt ChatGPT to generate three alternative comments
that express a sentiment opposite to the sentiment expressed in the instance.
We iteratively refined the prompt used to generate the alternative comments
and we evaluated the alternatives generated by ChatGPT until all authors
were satisfied that each alternative was sufficiently realistic. This process took
several iterations. Listed below is the prompt used for the sentiment transfer
from negative to neutral:

“Take the following source-code comment, and change the language of
the source-code comment to ensure that the resulting source-code com-
ment contains neutral sentiment. Generate three alternative, neutral,
source-code comments, but make sure to preserve the original meaning
of the comment as much as possible:”

After finalizing the prompt, three of this paper’s authors independently
voted to select the best-manipulated variation of the SATD instance from the
three alternatives. Criteria for voting adhere to the requirements listed above:
Did the sentiment transfer work (“Is the comment actually neutral?”), and
whether the manipulated comment describes the same problem as the original
comment. We selected the best alternative comments for each of the four

4 Version 3.5, accessed in November 2023 at https://chat.openai.com

Title Suppressed Due to Excessive Length 9

selected SATD instances based on the votes. For three manipulated instances,
all authors voted for the same alternative; for the fourth instance, two of the
three voters preferred one.

Table 2: The vignettes as they were used in the experiment. The source code
is matched to either the Negative or Neutral comment and shown to
the participant. The (M) indicates that the comment was generated
using ChatGPT.

Vignette #1
public static boolean useThetaStyleImplicitJoins;
public static boolean regressionStyleJoinSuppression;

Negative
// USED ONLY FOR REGRESSION TESTING!!!! todo :

↪→ obviously get rid of all this junk

Neutral (M) // Used only for regression testing! todo: clearly remove all this
↪→ unnecessary code

Vignette #2 ConstDeclNode constDeclNode = (ConstDeclNode) node;
Node constNode = constDeclNode.getConstNode();

Neutral // TODO: callback for value would be more efficient, but unlikely
↪→ to be a big cost (constants are rarely assigned)

Negative (M) // TODO: This is frustrating! A callback for value would be
↪→ more efficient, but unlikely to be a big cost (constants are
↪→ rarely assigned).

Vignette #3 public class ConstDeclNode extends AssignableNode
↪→ implements INameNode {

private final String name;
private final INameNode constNode;
...
}

Neutral // FIXME: ConstDecl could be two seperate classes (or done
↪→ differently since constNode and name never exist at the
↪→ same time).

Negative (M) // FIXME: Ugh, ConstDecl is a mess. It should have been
↪→ divided into distinct classes (or approached differently)
↪→ because constNode and name are never in sync.

Type Item

Continued on next page

10 Nathan Cassee et al.

Table 2: The vignettes as they were used in the experiment. The source code
is matched to either the Negative or Neutral comment and shown to
the participant. The (M) indicates that the comment was generated
using ChatGPT. (Continued)

Vignette #4 if (plot instanceof PiePlot) {
applyToPiePlot((PiePlot) plot);

}
else if (plot instanceof MultiplePiePlot) {

applyToMultiplePiePlot((MultiplePiePlot) plot);
}
else if (plot instanceof CategoryPlot) {

applyToCategoryPlot((CategoryPlot) plot);
}

Negative // now handle specific plot types (and yes, I know this is some
↪→ really ugly code that has to be manually updated any time a
↪→ new plot type is added − I should have written something
↪→ much cooler, but I didn’t and neither did anyone else).

Neutral (M) // Now address specific plot types (and yes, I am aware that this
↪→ code needs manual updates whenever a new plot type is
↪→ added − a more advanced implementation could have been
↪→ developed, but it wasn’t, and no other approach was
↪→ proposed).

Type Item

Table 2 contains an overview of the selected vignettes. Each vignette com-
bines a short source-code snippet with an accompanying source-code comment
that “admits” technical debt in the snippet. The Type column lists the sen-
timent polarity expressed by the comment, and the (M) tag denotes that the
comment on that line has been generated using ChatGPT.

Vignette Assignment: Respondents are assigned to one of the two variations for
each vignette. However, the assignment of variation to respondents is not fully
random. When assigning variations, we consider the alternative comments gen-
erated by ChatGPT as a blocking factor (Juristo and Moreno, 2001) because
the comments generated by ChatGPT might influence prioritization scores .
We refer to this blocking varaible as Manipulation.

We defined two experimental flows to limit the effect of the manipulation
on the outcome. Table 3 shows these two flows. Observe that we ensure that
each respondent sees two neutral and two negative vignettes and sees two
manipulated and two original vignettes. Participants are randomly assigned
to one of the two flows, and within a flow to order of the four vignettes is
randomized, such that the impact of the blocking factors is limited (Atzmüller
and Steiner, 2010). To ensure we do not bias participants, we do not reveal
to participants the polarity of the vignette.

Title Suppressed Due to Excessive Length 11

Table 3: The two different flows used for the vignette section of the survey.
Sentiment is the sentiment expressed in the vignette, while Manipulated de-
notes whether the respondent in the flow sees the original comment or the
manipulated one.

V1 V2 V3 V4

F low 1 Sentiment negative neutral negative neutral
Manipulated ✕ ✕ ✓ ✓

F low 2 Sentiment neutral negative neutral negative
Manipulated ✓ ✓ ✕ ✕

Finally, to validate that the vignettes shown in the experiment were ap-
propriate, and the questions asked were understandable, we piloted the survey
with a set of four active software engineers. Based on the feedback of the pilot
we made minor text changes to the wording of some questions, and clarified a
few concepts a bit better. The experiment was hosted using Qualtrics.5

2.3 Data Analysis

PrioritizationSentiment

Fig. 1: A Directed Acyclic Graph (DAG) illustrating the relation we are ana-
lyzing. The color blue denotes the outcome and red the exposure.

Figure 1 visualizes the relation we study in this manuscript as a Directed
Acyclic Graph (DAG). In a DAG, nodes are used to represent variables, and
arrows between nodes represent causal relations between variables (Elwert,
2013). For instance, Figure 1 should be interpreted as “A change in sentiment
leads to a change in prioritization”.

The analysis would be relatively straightforward, assuming that Figure 1 is
the correct model capturing all relevant effects. However, while we attempted
to control for as many confounding variables in the experimental design, there
were confounding factors we could not control for. For instance, manipulating
the vignettes to transfer sentiment could also have affected the prioritization.
Therefore, we create a more complete DAG that contains all other variables in
this experimental context that might influence the prioritization of Technical
Debt.

5 https://www.qualtrics.com/

12 Nathan Cassee et al.

Fig. 2 shows the complete mode, including all variables that we could not
control for in the design of the experiment. We first explain the construct that
each of the variables describes, and then we explain the relations between the
nodes.

– Importance, Urgency and Effort: This is the node prioritization in Fig-
ure 1 split into one node for each of the Likert-scale questions asked in the
experiment.

– Sentiment: Sentiment is the binary exposure variable, recording the sen-
timent of the vignette shown to the participant.

– Technical Debt: We selected four existing instances of technical debt to
use as the basis for the vignettes. While these four instances all belong
to the same category of technical debt, there are still variations in the
technical debt in each of the vignettes. It is a categorical variable, recording
which of the four vignettes the participant responded to.

– Manipulated: Each vignette in the experiment has two variations: The
unmodified, existing instance of technical debt and one variation for which
the alternative comment was generated using ChatGPT. Manipulated is a
binary variable indicating whether a participant was looking at a variation
generated by ChatGPT.

– Perception: From Cassee et al. (2022) we know that developers have dif-
ferent perceptions concerning the usage of negativity as a proxy for priority.
Whether a participant agrees, has no opinion, or disagrees with using neg-
ativity as a proxy for priority is indicated by this variable as a trinary
variable.

Technical Debt

EffortExperience

Importance

Manipulated

Perception

Sentiment Urgency

Fig. 2: The theoretical model visualized as a DAG. The color blue denotes the
outcome, red is the exposure, and grey denotes confounders.

Title Suppressed Due to Excessive Length 13

– Experience: Experience captures the participant’s years of professional
working experience.

We expect that the prioritization, measured as Importance, Urgency and
Effort, is directly influenced by the Sentiment in the vignette. Because of the
results of the survey of Cassee et al. (2022). Secondly, the Technical Debt
shown to participants is different in each vignette; therefore, we expect that
each item of technical debt will receive a different prioritization score. Finally,
we expect whether we Manipulated the comment to influence both prioritiza-
tion and sentiment. While we did our best to ensure the comments generated
using ChatGPT were as realistic as possible, the manipulated comments might
still contain language that influences the prioritization given by participants.
Additionally, comments generated by ChatGPT could also express negativity
differently than human-authored comments, and therefore, whether a comment
is Manipulated could affect how Sentiment influences prioritization.

Whether a participant believes negativity should be used to prioritize tech-
nical debt (Perception) will influence whether a participant uses Sentiment to
prioritize. We expect the Experience of participants to influence both how they
prioritize Technical Debt, and their Perception to using negativity as a proxy
for priority (Yeung et al., 2011; Zampetti et al., 2021). i.e., more experienced
participants will have seen more technical debt in their career and therefore
prioritize specific instances of technical debt. Similarly, for Perception, a more
experienced candidate could be more likely to think using negativity is an
acceptable prioritization mechanism.

Given the DAG shown in Figure 2, understanding the effect of negativity on
prioritization (measured as Effort, Urgency, and Importance) requires building
models that adjust for the other variables in the DAG. Specifically, under-
standing the total effect of Sentiment on Prioritization requires adjusting for
Manipulated, Perception and Experience. To accurately estimate the effect of
sentiment on prioritization, we use Bayesian statistics (Gelman et al., 2013).
In frequentist statistics, model outcomes are often single-point estimates of
effects and significance values. One benefit of Bayesian statistics is the fact
that model output is not just a single-point estimate. Instead, because we use
Bayesian statistics, we can better account for any uncertainty in the data (Fu-
ria et al., 2022; Kruschke and Liddell, 2018; McElreath, 2018). By following
existing guidelines (Furia et al., 2022; Gelman et al., 2020) and the examples
of the applications of Bayesian statistics to software engineering data (Ghor-
bani et al., 2023; Torkar et al., 2022) we ensure we can estimate the effect of
negativity on prioritization.

In the remainder of this section, we first describe the Bayesian models we
fit to the data. Then, we explain how we use the models to understand the
effect of negative sentiment on the prioritization of SATD.

14 Nathan Cassee et al.

Outcome ∼ Ordered-logit(ϕ, κ)
ϕ = αeffects[Sentiment, P erception] + αmanipulated[Manipulated]

+ αexperience ∗ Experience
αeffects ∼ Normal(0, 0.5)

αmanipulated ∼ Normal(0, 0.5)

αexperience ∼ Normal(0, 0.5)
κ ∼ Normal(0, 2)

Where Sentiment, Manipulated ∈ {True, False}
Perception ∈ {Disagree, No Opinion, Agree}
Experience ∈ Q

(Model 1)

Model: Based on the causal graph of Figure 2, we should adjust for three
variables: Perception, Manipulated, and Experience. Model 1 shows the model
we use, where Outcome is the score given by a participant to the vignette.
Because we have three outcome constructs: Effort, Importance, Urgency, we
fit one model per construct. The first line shows the choice of the likelihood
function, an Ordered-logit. lines 2–3 show the choice of model parameters,
indicated by the prefix α, lines 4–8 show the choice of priors, and lines 9–11
show the allowed values for the input variables.

Because the outcomes are responses on a Likert scale. i.e., the responses
are on an ordinal scale, we use an Ordered Logit as a likelihood function as
recommended by (McElreath, 2018). Ordered-logit has two arguments: ϕ, a
model-term consisting of all of the parameters (denoted by α) and κ, the cut-
points, used to model the log-cumulative-odds for the Likert responses. The
model itself has four input variables (typeset in red and italics): Whether
the vignette shown to the developer was negative (Sentiment), whether the
vignette was manipulated (Manipulated), what the perception of the respon-
dent was (Perception), and the experience of the respondent (Experience).
Negative and manipulated are binary variables, perception is a trinary vari-
able based on the respondent’s answer to Q9, and age is a natural number.
effects is a 2 by 3 matrix with a model parameter for each combination of
Sentiment and Perception. Manipulated is a vector of length 2, for each
value of Manipulated, and experience, Experience, is a single parameter.

The priors we select are all uninformative, and we do not associate any
positive or negative effects to them. We opted for uninformative priors as we
did not want to bias the models. Selecting priors that expect sentiment to
increase prioritization scores could potentially bias our results, and there is no
literature that allows us to pick more informative priors.
Estimating Effects: We use the three models, fit for each of the three out-
come variables, to quantify the impact of negativity on prioritization. First,
we plot the distribution of the model parameters related to sentiment, the

Title Suppressed Due to Excessive Length 15

so-called posterior, as density plots. The posterior plots show the effect on
the outcome variable that the model associates with a change from neutral
to negative sentiment and are commonly used to interpret results of Bayesian
models (McElreath, 2018). We also use the posterior to compute the Evidence
Ratio of the effect of negativity and interpret the evidence ratio according to
Stefan et al. (2019). Where an evidence ratio larger than one is considered
as evidence in favor of a correlation, and an evidence ratio smaller than one is
considered as evidence for an inverse correlation.

Through the posteriors we can understand whether negativity influences
prioritization, however, it does not allow us to quantify how often negativity
leads to a different prioritization score. Therefore, we also use the fitted models
to simulate the effect of negativity i.e., “What are the odds that changing sen-
timent from neutral to negative increases the prioritization score?” To do this,
we manually fix the input variables (Sentiment, Manipulated, Perception) to
obtain two simulated distributions of prioritization scores for a SATD instance:
a set of prioritization scores for an SATD instance with neutral sentiment, and
SATD instance with negative sentiment. We can quantify how negativity in-
fluences the outcome variable by computing the contrast between these two
distributions. Because Model 1 has as input the perception of the respondent,
whether the vignette has been manipulated, and the experience of the respon-
dent we have to fix values for all three. As we are not interested in a scenario in
which the vignettes are manipulated, we fix Manipulated to false. Similarly,
we set Experience to the mean experience value of the respondents. Finally,
we can not fix the value of Perception to one particular value for perception.
Therefore, we compute a contrast distribution for each value of Perception
(Disagree, Indifferent, Agree).

Table 4: The odds ratio between the odds of the priority score increasing com-
pared to the odds of the score decreasing if sentiment changes from
neutral to negative.

Agree 1.02 1.00 0.99
No Opinion 1.00 0.99 1.00
Disagree 1.00 0.98 1.00

Perception Effort Urgency Importance

Prior predictive checks: To ensure our choice of priors does not bias our results,
we perform prior predictive checks. Specifically, we sample from the model us-
ing only the priors to verify that the outcomes of the model are realistic. i.e.,
the model only generates responses within the range of 1 – 5. Secondly, we
want to verify that the responses of the model are unbiased, i.e., the priors
do not associate any effect of negativity on prioritization. To verify the out-
comes are unbiased, we compute the odds of the prioritization increasing if
negativity is expressed, as described in estimating effects. Figure 3 plots the

16 Nathan Cassee et al.

Disagree

No Opinion

Agree

−2 −1 0 1 2

Priors for Effort

(a)

−2 −1 0 1 2

Priors for Importance

(b)

−2 −1 0 1 2

Priors for Urgency

(c)

Fig. 3: Distributions of the priors for each of the outcome variables.

distribution of the priors for the effect of negativity on the estimation of the
outcome variables. The distribution for each of the priors is centered around
zero, showing that the priors do not favor any specific outcome. Additionally,
if the priors are unbiased, we expect the odds ratios to be close to zero. This
is the case, as can be seen in Table 4.

Perception and Demographics Respondents’ answers to the closed questions
and demographics are visualized. As the questions on Perception are taken
verbatim from the study of Cassee et al. (2022) the results obtained in this ex-
periment are compared to those of the original study. Meanwhile, the answers
to questions on demographics taken from the Stack Overflow survey will be
compared to the most recent results of the Stack Overflow survey.

3 Results

In total, we received 75 full and partial responses to the experiment. Based on
a manual check, we removed one response because the values provided by the
respondent for age and experience were unrealistic. Because we also accepted
partial responses and because the instrument contained optional questions, we
discuss the number of relevant and full responses included per question.

Title Suppressed Due to Excessive Length 17

< 18

18 - 24

25 - 34

35 - 44

45 - 54

55 - 64

> 64

Ag
e
(y
ea

rs
)

0.00%

20.75%

30.19%

28.30%

18.87%

1.89%

0.00%

Distribution of Age (Responses: 53)

(a)

< 1
1 - 4
5 - 9

10 - 14
15 - 19
20 - 24
25 - 29
30 - 34
35 - 39
40 - 44
45 - 49

> 50

Ex
pe

rie
nc

e
(y
ea

rs
)

0.00%
16.95%

25.42%
13.56%

11.86%
8.47%

11.86%
3.39%

1.69%
5.08%

1.69%
0.00%

Distribution of Experience (Responses: 59)

(b)

Fig. 4: Histograms for respondent age and experience.

3.1 Demographics

Figure 4 shows the respondent age and experience distributions. The bins for
both plots are identical to the bins of the Stack Overflow developer survey.6
We compare the demographics to the Stack Overflow developer survey because
the Stack Overflow survey is one of the largest surveys of developers, with
almost 90,000 respondents for 2023. For age, our experiment’s population
appears to be a bit older than the responses to the Stack Overflow developer
survey. Notably, we saw no respondents younger than 18 or older than 64.
Experience-wise, the distribution of respondents is quite similar to that of
the Stack Overflow survey. Most importantly, there are no large differences
between our respondents and the respondents to the Stack Overflow survey.
Therefore, we conclude, based on the distributions of age and experience, that
our respondents are a good representation of the general developer population
for these two characteristics.

Table 5: The self-described employment status and the self-described coding
outside of respondents’ work.

Employed full-
time

45 76.27% Personal projects 20 64.52%

Student, full-time 8 13.56% I do not write code
outside of work

7 22.58%

Self-employed 4 6.78% School or
Academic

3 9.68%

Employment
Status

% Coding outside
of Work

%

Continued on next page

6 https://survey.stackoverflow.co/2023/#overview

18 Nathan Cassee et al.

Table 5: The self-described employment status and the self-described coding
outside of respondents’ work. (continued)

Employed part-
time

2 3.39% Open-source 1 3.23%

Total 59 100.00% Total 31 100.00%

Employment
Status

% Coding outside
of Work

%

Table 5 shows respondents’ employment status and the coding respondents
do outside of work. A large majority of the respondents are professional de-
velopers who are employed full-time.

3.2 Negativity’s Effect on Prioritization

For the Bayesian models, we can only use responses for which all questions used
in the model have received a response, particularly the demographic question
on respondent experience (Q13). This requirement leaves 59 valid responses
for the experiment on which the models have been fit.

Figure 5 visualizes the density distribution for the posteriors related to the
effect of sentiment on the outcome. In other words, this figure shows the effect

Disagree

No Opinion

Agree

−1 0 1

Posteriors for Effort

(a)

−1.0 −0.5 0.0 0.5 1.0 1.5

Posteriors for Importance

(b)

−1 0 1

Posteriors for Urgency

(c)

Fig. 5: Distributions of the posterior for each of the outcome variables.

Title Suppressed Due to Excessive Length 19

the model associates with a change in sentiment from neutral to negative.
A positive value indicates that a change from neutral to negative increases
the prioritization score. As can be observed in Figure 5, the distributions of
the priors are generally quite wide, and they overlap with the dashed line
indicating zero. However, this uncertainty is not unexpected or uncommon
in Bayesian analysis, especially in studies with smaller samples (Frattini et al.,
2024; Ghorbani et al., 2023).

Table 6: Evidence ratio table for the hypothesis that negativity increases the
prioritization score for each of the outcome variables.

Agree Moderate for Strong for Strong for
No Opinion Moderate for Anecdotal for Anecdotal

against
Disagree Anecdotal

against
Anecdotal for Anecdotal

against

Perception Effort Urgency Importance

Because we adjusted the models for the Perception of the participants, the
effect of sentiment on the outcome can vary for each of the three levels of Per-
ception. The labels Disagree, No Opinion, Agree therefore show the effect of
negative sentiment on prioritization based on whether the participants believe
that negativity should be interpreted as a signal that the SATD has a higher
priority. The posteriors indicate that participants who agreed with the use
of negativity as a proxy for priority were also more likely to assign a higher
priority score, for all of the three measured variables. More interestingly, par-
ticipants who indicated they had no opinion on the use of negativity as a proxy
for priority increase the score for effort. Finally, for the other groups and out-
comes we see that the models do not associate any impact of negativity, as the
means all appear to be centered around zero. Table 6 lists an interpretation
of the Bayes factor, or the strength of the evidence, of the hypothesis that
negativity increases the prioritization. We interpret the values for the Bayes
factor according to Stefan et al. (2019).

20 Nathan Cassee et al.

Table 7: The odds ratio between the odds of the priority score increasing com-
pared to the odds of the score decreasing if sentiment changes from
neutral to negative. Bold font indicates whether the evidence ratio
supports the hypothesis that negativity increases prioritization (Ta-
ble 6).

Agree 1.40 1.95 1.50
No Opinion 1.56 1.07 0.98
Disagree 0.95 1.10 0.94

Perception Effort Urgency Importance

However, quantifying the actual impact that negativity has e.g., answering
the question: “Does negativity make it more likely that SATD receives a higher
priority score?” is not possible based only on the plotted posteriors. There-
fore, we also used the models to simulate, per outcome variable, the difference
in priority scores for SATD expressing either neutral or negative sentiment.
This results in a set of probabilities: How likely is it that negativity results
in a higher priority score? How likely is it that negativity results in a lower
priority score? Table 7 shows the ratio between these two odds for each out-
come variable and for each value of Perception. From this table, we conclude
that 37% of respondents who interpret negativity as a signal for importance
(i.e., “Agree”) are also more likely to assign higher priority scores for SATD ex-
pressing negative sentiment. In this case, the consistency between respondents’
beliefs and actions is noteworthy, as the value-action gap is a well-documented
bias (Barr, 2006). Secondly, Table 7 also shows that the perception of Urgency
(OR: 1.95) is more likely to be influenced by negative sentiment than Effort
(OR: 1.40) and Importance (OR: 1.50). Finally, 20% of respondents who had
no opinion on whether they interpreted negativity as a signal of importance
are likelier to assign a higher score for effort when negativity is expressed.

Findings – Negativity

Up to 57% of developers estimate the priority of self-admitted technical
debt as higher when negativity is used to describe it. These develop-
ers are between 1.4 and 2.0 times more likely to increase, instead of
decrease, their prioritization scores for self-admitted technical debt ex-
pressing negativity.

3.3 Perceptions and Self-Reported Behavior

Figure 6 shows the responses to the questions asking participants about how
often they write or come across SATD that expresses negative sentiment. These
results indicate that almost half of the developers encounter SATD expressing

Title Suppressed Due to Excessive Length 21

0%10%20%30%40%50%60%70%80% 10% 20% 30%
Percentage of Responses

How often do you come
across negative SATD?

How often do you
write negative SATD?

How often do
you write SATD?

18%

37%

15%

28%

37%

43%

38%

22%

28%

12%

5%

10%
Never
Rarely (Less than
once a month)
Sometimes (Monthly)
Often (Weekly)
Very often (Daily)

Fig. 6: Responses to survey questions Q4, Q5, Q6.

0%25%50%75% 25%
Percentage of Responses

I interpret negativity
as a proxy for priority.

Writing negative SATD
to indicate priority is

acceptable.

I draft negative SATD
for important issues.

12%

35%

17%

32%

32%

30%

20%

22%

28%

27%

12%

25%

10%

Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree

Fig. 7: Responses to survey questions Q7, Q8, Q9.

negative sentiment monthly or even more often. However, most developers,
almost 75%, never, or rarely, write any SATD expressing negative sentiment.
The distributions observed in this study are similar to the study of Cassee et al.
(2022). The most important difference between this study and the findings of
Cassee et al. is that respondents to the experiment tend to come across SATD
expressing negativity less frequently. This could be explained by the fact that
we used convenience sampling through our industrial contacts for this experi-
ment, and because industrial developers annotate SATD differently (Zampetti
et al., 2021).

Figure 7 outlines the results to the questions on respondents perceptions.
Compared to Cassee et al. (2022) the proportion of respondents indicating
that they strongly disagree with the statement that they interpret negativity
as a proxy for priority is smaller. For the other two statements the results for
this experiment are similar to those of Cassee et al..

From the combination of Figure 6 and Figure 7 we generally confirm the
findings of Cassee et al. (2022). A large majority of developers disagree that
writing SATDs that express negative sentiment to signal priority is acceptable.
However, even if most developers believe this, they still express negativity in

22 Nathan Cassee et al.

SATDs to indicate priority or state that they interpret negativity as a proxy
for priority.

Findings – Perceptions

Between 25% to 50% of developers draft and/or encounter self-admitted
technical debt expressing negativity. Meanwhile, 67% of developers state
that using negativity as a proxy for priority is unacceptable.

4 Discussion

Our study shows that developers use source-code comments to communicate
not only a description of technical debt but also priority. From previous work,
we know that source code comments have always been used for various pur-
poses, including the description of technical-debt (Pascarella and Bacchelli,
2017). Furthermore, descriptions of technical debt in source-code comments
cover a wide range of technical issues (Cassee et al., 2022; Maldonado et al.,
2017). Based on the results of our experiment, we add to the existing body of
knowledge on the role of source-code comments in addressing technical debt.
Specifically, we find that negativity in these descriptions results in the same
technical issue being prioritized differently. Therefore, we conclude that de-
velopers use source code comments not just to describe technical issues but
also use negativity to communicate priority. Negativity can be seen as a hid-
den message or additional dimension, as a SATD comment’s primary purpose
is to describe the technical debt. This study and the results of the previous
study (Cassee et al., 2022) show that developers purposefully express negativ-
ity to emphasize priority and interpret negativity as a proxy for priority.

Does this mean developers should use negativity to describe technical-debt they
think is important? For individual developers, using negative expressions to
annotate the technical debt they are working on might be an effective strategy.
It could result in the issue they care about being prioritized and, therefore,
fixed before other technical debt is addressed. However, from a team perspec-
tive, this is a potentially problematic strategy. Software projects are often
characterized by only having limited capacity available to work on technical
debt (Zampetti et al., 2021), and developers using negativity to describe tech-
nical debt lay claim to more of this capacity. Secondly, whether developers are
influenced by negativity is conditional to their perceptions, so not everyone
in a team will interpret the priority similarly. Additionally, two-thirds of de-
velopers believe that using negativity as a proxy for priority is unacceptable.
Finally, technical debt demoralizes developers (Besker et al., 2020), and ex-
pressions of negativity could be particularly demoralizing; therefore, we would
not recommend developers use negativity as a proxy for priority as there are
alternative prioritization methods. From Cassee et al. (2022), we know devel-

Title Suppressed Due to Excessive Length 23

opers prefer the use of other channels to communicate the priority of SATD,
such as issue trackers or work-management systems.

Does this mean developers should stop expressing negativity? Emotions and
sentiment are a part of everyday life (Kleef, 2009). It has long been found
that developers express emotions in many different software engineering ac-
tivities (Calefato et al., 2018; Lin et al., 2022; Mäntylä et al., 2016), and
technical debt appears to be able to trigger negative emotions in software en-
gineers (Olsson et al., 2021). This makes it unrealistic to expect developers
to stop expressing their emotions or opinions completely. Instead, this study
shows how negativity can affect the management of technical debt, where
prioritization is one of the many different management activities of techni-
cal debt (Li et al., 2015). However, we believe it is important to emphasize
that any negative emotions expressed are not directed towards developers, as
they sometimes are (Gachechiladze et al., 2017). Especially as negativity di-
rected towards other developers could be considered toxic, with far-reaching
consequences (Miller et al., 2022; Raman et al., 2020).

Generalizability & Future work: We expect the findings of this study to apply
to technical debt in general and not just to self-admitted technical debt de-
scribed in source-code comments. Because of the high level of control in the
experiments and the experienced participants, we expect the observed effect
of negativity on prioritization to translate to technical debt described on other
platforms. Notably, this includes places like issue-trackers, as these are places
where technical debt is often described (Cassee et al., 2022; Xavier et al., 2022;
Zampetti et al., 2021).

Through the experiment, we conclude that negativity affects prioritiza-
tion, and we describe how developers use negativity in source-code comments
to communicate priority. However, a consequence of the high control of the
experiments is the reduced realism. Therefore, there is still an opportunity for
future work to understand how negativity in technical debt influences prioriti-
zation in the “field” (Storey et al., 2020). Research methods or strategies like
ethnographic observations can describe the prioritization of technical debt in
software projects, as opposed to the contrived setting of the experiments, like
the work of Aranda and Venolia (2009) on bugs. Or, research methods such
as mining software repositories can be used to study whether SATD in which
negativity is expressed is removed quicker than neutral SATD.

Secondly, in this study, we only focus on the effect of negativity, and we
consider the effect of positivity to be out of scope. This is done purposefully, as
previous work has found that positivity rarely occurs in SATD (Cassee et al.,
2022). Therefore, understanding its effect on prioritization is not as relevant.
However, prior literature has described other software engineering activities
where developers express positivity in their communication (Asri et al., 2019;
Calefato et al., 2018; Cheruvelil and da Silva, 2019). We believe that these
activities (change requests, asking questions on SO) are better suited to study
the effect of positivity.

24 Nathan Cassee et al.

5 Threats to Validity

Notwithstanding our effort to ensure our results were valid, factors outside of
our control might still have influenced the results. To discuss these threats to
validity and our mitigations, we use the framework of Wohlin et al. (2012), as
the research method of this study is an experiment.

Internal Validity: We carefully designed the experiments to reduce the effect
of confounders as much as possible, for instance, by randomizing the order of
vignettes, using existing instances of SATD, and by making sure the instances
were understandable. However, to create the vignettes we manipulated de-
scriptions to create either a negative or a neutral counterpart. We took several
precautions to reduce the bias of the manipulation of the obtained results.
These include ensuring a balance by creating two negative and two neutral
manipulated descriptions, generating several manipulated descriptions, and
voting for the best one. Furthermore, we added manipulation as a parameter
to the model to adjust for any remaining bias.

Secondly, we did not state the exact purpose of the experiments to prevent
the respondents from guessing the experiment’s hypothesis and responding in
line with their attitude towards the hypothesis. Similarly, the vignettes did
not indicate whether participants viewed the neutral or the negative instance.
However, there is still a chance that some respondents might have recognized
the purpose of the experiments after scoring two or more vignettes and were,
therefore, influenced by their attitudes.

Finally, there is a risk that the wording of the perception-related questions
might have biased participants. However, re-using the exact wording from the
survey administered by Cassee et al. (2022) allows us to compare our results
to those of Cassee et al..

External Validity: The respondents sampled for the experiment were diverse
with respect to age and working experience, with both industry developers
and open-source developers partaking in the experiment. Therefore, we expect
our results to generalize to both open and closed-source developers, especially
because the respondent’s demographics are similar to those of the respondents
to the Stack Overflow survey. However, the most important threat to external
validity we identify is related to the choice of vignettes. In the experiments, we
only showed participants four instances, or vignettes, of technical debt, and
those instances all belonged one type of SATD, Poor implementation choices.
Therefore, the results of this experiment might not generalize over other types
or categories of SATD, such as functional issues, or SATD described in issue
tracking systems. However, we tried to minimize the threat by using four
different vignettes instead of one, and therefore, trying to balance participant
fatigue or disengagement with generalizability.

Construct Validity: Most importantly, we recognize that Importance, Urgency,
and Effort as Likert scale questions are not operationalizations of priority used

Title Suppressed Due to Excessive Length 25

in practice by developers to score technical debt. However, we opted for these
three constructs because they are easy to explain to participants and because
there is no universally accepted construct to measure the priority of technical
debt (Bellotti et al., 2004; Gavidia-Calderon et al., 2021; Middleton et al.,
2018). While the usage of these constructs might influence results, they allow
us to measure perceived priority consistently.

6 Related Work

The below section discusses the related work on SATD, its management, and
sentiment analysis in software engineering.

6.1 Self-Admitted Technical Debt

Many different aspects of technical debt have been studied previously (Tom
et al., 2013), such as, for instance, its management (Li et al., 2015), or the finan-
cial aspects (Ampatzoglou et al., 2015). This work focuses on the self-admission
of Technical Debt (SATD), often present in software systems as source-code
comments (Maldonado and Shihab, 2015; Potdar and Shihab, 2014). As for
technical debt, many different aspects of SATD have been studied. Such as
the annotation practices of industry developers (Zampetti et al., 2021), the
places where SATD has been described (Kashiwa et al., 2022; Xavier et al.,
2020, 2022), and the curation of datasets of SATD instances (Guo et al., 2021;
Sridharan et al., 2023).

Because of the negative connotations of technical debt, research has focused
on the classification of SATD in source code. Liu et al. (2018) found that a
SATD detector based on text-mining techniques can automatically identify
SATD. Meanwhile, Ren et al. (2019) have used deep-learning models to clas-
sify whether source code snippets contain SATD, finding that these models,
trained on large datasets, can be competitive. However, what automatic detec-
tion technique has the best predictive performance is not entirely known, as
Guo et al. (2021) found that simple rule-based detection techniques can still
outperform existing deep-learning tools. Cassee et al. (2022) has found that
different types of issues are described in SATD, including functional issues,
poor implementation choices, and documentation issues. Furthermore, from
surveying developers, Cassee et al. find that a group of developers state they
use negativity to prioritize SATD.

Another often studied aspect of SATD is its removal; both Palomba et al.
(2017) and Peruma et al. (2022) studied the link between refactorings and
SATD. Palomba et al. (2017) found that code refactorings occur in locations
where SATD is present, while Peruma et al. (2022) finds that code refactoring
often coincides with removing SATD. By studying a dataset of SATD instances
Maldonado et al. (2017) found that 75% of SATD instances are removed in
subsequent source code revisions. Furthermore, Zampetti et al. (2018) found

26 Nathan Cassee et al.

that the removal of SATD is acknowledged in commit messages. Additionally,
Zampetti et al. find that in 20% to 50% of cases, SATD is removed when entire
methods or classes are removed. By surveying developers Tan et al. (2021)
found that self-removal of SATD is often a conscious decision. Moreover, they
found that more experienced developers are more often concerned when it
comes to the removal of SATD. However, none of the studies on the removal
of SATD focus on whether the presence of negativity influences whether SATD
is removed.

6.2 Sentiment in Software Engineering

Because this study focuses on the effect of sentiment on the prioritization
of SATD, we describe literature related to the role of sentiment in software
engineering. In general, sentiment analysis has been used to study a wide
variety of software engineering activities (Lin et al., 2022), such as live meeting
analysis (Herrmann and Klunder, 2021) or to design and build recommender
systems (Lin et al., 2018).

Different studies have tried to understand whether expressions of negative
sentiment are correlated with suboptimal development practices, such as unre-
solved issues, design smells, or bugs. Valdez et al. (2020) found that unresolved
issues in Jira tend to express more negative sentiment than closed issues. Sim-
ilarly, based on a study of issue reopenings Cheruvelil and da Silva (2019)
finds that issues that have been reopened once or more than once tend to
have more comments expressing negative emotions. For commit messages Huq
et al. (2020) reports that commits related to bug fixing express more negative
sentiment. While for code reviews Asri et al. (2019) finds that code reviews in
which negative sentiment is expressed tend to take longer to complete. Olsson
et al. (2021) find that some design smells cause developers to feel negative
emotions.

Wrt. positive sentiment, or the expression of positive emotions, Ortu et al.
(2015) has found that more positive sentiment in the description appears to
correlate with a shorter issue resolution time. Similarly, Sanei et al. (2021) has
studied the sentiment in issue comments, finding that more positive comments
correlate with faster resolution.

After studying questions on Stack Overflow Calefato et al. (2018) reports
that successful questions on SO tend to be neutral, i.e., express no positive or
negative sentiment. Implying that neutral or more factual questions are more
likely to receive a quicker response.

The existing studies focus on the impact of sentiment on software engi-
neering through correlational analysis. However, the studies don’t focus on
causation (i.e., “did the expression of sentiment polarity cause the observed
effect?”). Through the controlled experiment reported in this study, we further
understand how negativity influences the perception of priority and explain
how expressions of negativity impact software development.

Title Suppressed Due to Excessive Length 27

7 Conclusion

In this paper, we report on a controlled experiment to study whether develop-
ers interpret negativity in self-admitted technical debt as a proxy for priority.
We exposed participants to instances of self-admitted technical debt with or
without negativity and asked them to estimate the priority of each instance. By
analyzing the prioritization scores of the experiments using Bayesian statistics,
we describe how negativity influences the perception of priority. Furthermore,
to better describe the role negativity plays in the management of self-admitted
technical debt, we asked respondents a series of questions about their percep-
tions towards the usage of negativity in SATD.

Based on the participation of 59 experienced industrial software engineers,
we find that one-third to half of the developers are more likely to increase their
estimation of priority if negativity is used to describe the SATD. Specifically,
they’re between 1.5 and 2 times as likely to increase, as opposed to decrease,
their prioritization score if negativity is present. Secondly, we confirm previous
findings and conclude that two-thirds of developers believe writing SATD in
which negativity is expressed or interpreting negativity as a proxy for priority
is unacceptable. Our findings show that developers who believe the usage of
negativity as a proxy for priority is unacceptable still admit to writing negative
SATD and use negativity to estimate priority.

Based on the experiment, we learn how developers use negativity in SATD
to communicate priority, in particular, we find that developers use negativ-
ity as an additional dimension, in addition to descriptions of technical issues.
Furthermore, our results show why developers’ expression of negativity is un-
avoidable and help explain the purpose of negative expressions. However, our
results also show why using negativity to describe technical debt might not be
advisable because of both developers’ perceptions, and not all developers are
influenced by it.

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability Statement

The data used for this study and the notebook used to analyze the data are
publicly available in a figshare repository.7

7 https://doi.org/10.6084/m9.figshare.26863435

28 Nathan Cassee et al.

References

Aguinis H, Bradley KJ (2014) Best practice recommendations for designing
and implementing experimental vignette methodology studies. Organiza-
tional Research Methods 17(4):351–371, DOI 10.1177/1094428114547952

Ampatzoglou A, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P (2015) The
financial aspect of managing technical debt: A systematic literature review.
Information and Software Technology 64:52–73, DOI 10.1016/j.infsof.2015.
04.001

Aranda J, Venolia G (2009) The secret life of bugs: Going past the errors and
omissions in software repositories. IEEE, pp 298–308, DOI 10.1109/ICSE.
2009.5070530

Asri IE, Kerzazi N, Uddin G, Khomh F, Idrissi MAJ (2019) An empirical
study of sentiments in code reviews. Information and Software Technology
114:37–54, DOI 10.1016/j.infsof.2019.06.005

Atzmüller C, Steiner PM (2010) Experimental vignette studies in survey re-
search. Methodology 6(3):128–138, DOI 10.1027/1614-2241/a000014

Barr S (2006) Environmental action in the home: Investigating the ‘value-
action’ gap. Geography 91:43–54, DOI 10.1080/00167487.2006.12094149

Bellotti V, Dalal B, Good N, Flynn P, Bobrow DG, Ducheneaut N (2004)
What a to-do: studies of task management towards the design of a personal
task list manager. ACM, pp 735–742, DOI 10.1145/985692.985785

Besker T, Ghanbari H, Martini A, Bosch J (2020) The influence of techni-
cal debt on software developer morale. Journal of Systems and Software
167:110586, DOI 10.1016/j.jss.2020.110586

Calefato F, Lanubile F, Novielli N (2018) How to ask for technical help?
evidence-based guidelines for writing questions on stack overflow. Informa-
tion and Software Technology 94:186–207, DOI 10.1016/j.infsof.2017.10.009

Cassee N, Zampetti F, Novielli N, Serebrenik A, Penta MD (2022) Self-
admitted technical debt and comments’ polarity: an empirical study. Em-
pirical Software Engineering 27:139, DOI 10.1007/s10664-022-10183-w

Cheruvelil J, da Silva BC (2019) Developers’ sentiment and issue reopening.
IEEE, pp 29–33, DOI 10.1109/SEmotion.2019.00013

Cunningham W (1992) The wycash portfolio management system. SIGPLAN
OOPS Mess 4(2):29–30, DOI 10.1145/157710.157715

Danilova A, Naiakshina A, Horstmann S, Smith M (2021) Do you really code?
designing and evaluating screening questions for online surveys with pro-
grammers. IEEE, pp 537–548, DOI 10.1109/ICSE43902.2021.00057

Elwert F (2013) Graphical causal models. DOI 10.1007/978-94-007-6094-3 13
Frattini J, Fucci D, Torkar R, Montgomery L, Unterkalmsteiner M, Fischbach

J, Mendez D (2024) Applying bayesian data analysis for causal inference
about requirements quality: A replicated experiment. 2401.01154

Furia CA, Torkar R, Feldt R (2022) Applying bayesian analysis guidelines to
empirical software engineering data: The case of programming languages and
code quality. ACM Transactions on Software Engineering and Methodology
31:1–38, DOI 10.1145/3490953

Title Suppressed Due to Excessive Length 29

Gachechiladze D, Lanubile F, Novielli N, Serebrenik A (2017) Anger and its
direction in collaborative software development. IEEE, pp 11–14, DOI 10.
1109/ICSE-NIER.2017.18

Gavidia-Calderon C, Sarro F, Harman M, Barr ET (2021) The assessor’s
dilemma: Improving bug repair via empirical game theory. IEEE Trans-
actions on Software Engineering 47(10):2143–2161, DOI 10.1109/TSE.2019.
2944608

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013)
Bayesian Data Analysis. Chapman and Hall/CRC, DOI 10.1201/b16018

Gelman A, Vehtari A, Simpson D, Margossian CC, Carpenter B, Yao Y,
Kennedy L, Gabry J, Bürkner PC, Modrák M (2020) Bayesian workflow.
URL http://arxiv.org/abs/2011.01808

Ghorbani A, Cassee N, Robinson D, Alami A, Ernst NA, Serebrenik A, Wa-
sowski A (2023) Autonomy is an acquired taste: Exploring developer prefer-
ences for github bots. IEEE, pp 1405–1417, DOI 10.1109/ICSE48619.2023.
00123

Guo Z, Liu S, Liu J, Li Y, Chen L, Lu H, Zhou Y (2021) How far have we
progressed in identifying self-admitted technical debts? a comprehensive em-
pirical study. ACM Transactions on Software Engineering and Methodology
30:1–56, DOI 10.1145/3447247

Herrmann M, Klunder J (2021) From textual to verbal communication: To-
wards applying sentiment analysis to a software project meeting. IEEE, pp
371–376, DOI 10.1109/REW53955.2021.00065

Hughes JL, Camden AA, Yangchen T (2016) Rethinking and updating de-
mographic questions: Guidance to improve descriptions of research sam-
ples. Psi Chi Journal of Psychological Research 21:138–151, DOI 10.24839/
2164-8204.JN21.3.138

Huq SF, Sadiq AZ, Sakib K (2020) Is developer sentiment related to software
bugs: An exploratory study on github commits. IEEE, pp 527–531, DOI
10.1109/SANER48275.2020.9054801

Johnson MK, Hashtroudi S, Lindsay DS (1993) Source monitoring. Psycho-
logical Bulletin 114:3–28, DOI 10.1037/0033-2909.114.1.3

Juristo N, Moreno AM (2001) Experiments with undesired variations. DOI
10.1007/978-1-4757-3304-4 9

Kashiwa Y, Nishikawa R, Kamei Y, Kondo M, Shihab E, Sato R, Ubayashi N
(2022) An empirical study on self-admitted technical debt in modern code
review. Information and Software Technology 146:106855, DOI 10.1016/j.
infsof.2022.106855

Kleef GAV (2009) How emotions regulate social life. Current Directions in
Psychological Science 18:184–188, DOI 10.1111/j.1467-8721.2009.01633.x

Kruschke JK, Liddell TM (2018) The bayesian new statistics: Hypothesis
testing, estimation, meta-analysis, and power analysis from a bayesian
perspective. Psychonomic Bulletin & Review 25:178–206, DOI 10.3758/
s13423-016-1221-4

Lenarduzzi V, Besker T, Taibi D, Martini A, Fontana FA (2021) A sys-
tematic literature review on technical debt prioritization: Strategies, pro-

30 Nathan Cassee et al.

cesses, factors, and tools. Journal of Systems and Software 171:110827, DOI
10.1016/j.jss.2020.110827

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on technical
debt and its management. Journal of Systems and Software 101:193–220,
DOI 10.1016/j.jss.2014.12.027

Lim E, Taksande N, Seaman C (2012) A balancing act: What software prac-
titioners have to say about technical debt. IEEE Software 29:22–27, DOI
10.1109/MS.2012.130

Lin B, Zampetti F, Bavota G, Penta MD, Lanza M, Oliveto R (2018) Sentiment
analysis for software engineering. ACM, pp 94–104, DOI 10.1145/3180155.
3180195

Lin B, Cassee N, Serebrenik A, Bavota G, Novielli N, Lanza M (2022) Opin-
ion mining for software development: A systematic literature review. ACM
Transactions on Software Engineering and Methodology 31:1–41, DOI
10.1145/3490388

Liu Z, Huang Q, Xia X, Shihab E, Lo D, Li S (2018) Satd detector: a text-
mining-based self-admitted technical debt detection tool. ACM, pp 9–12,
DOI 10.1145/3183440.3183478

Maldonado EDS, Shihab E (2015) Detecting and quantifying different types
of self-admitted technical debt. 2015 IEEE 7th International Workshop on
Managing Technical Debt, MTD 2015 - Proceedings pp 9–15, DOI 10.1109/
MTD.2015.7332619

Maldonado EDS, Abdalkareem R, Shihab E, Serebrenik A (2017) An empirical
study on the removal of self-admitted technical debt. IEEE, pp 238–248,
DOI 10.1109/ICSME.2017.8

Mäntylä M, Adams B, Destefanis G, Graziotin D, Ortu M (2016) Mining
valence, arousal, and dominance - possibilities for detecting burnout and
productivity? Proceedings - 13th Working Conference on Mining Software
Repositories, MSR 2016 pp 247–258, DOI 10.1145/2901739.2901752

McElreath R (2018) Statistical Rethinking. Chapman and Hall/CRC, DOI
10.1201/9781315372495

Middleton S, Charnock A, Forster S, Blakey J (2018) Factors affecting -
individual task prioritisation in a workplace setting. Future Healthc J
5(2):138–142

Miller C, Cohen S, Klug D, Vasilescu B, KaUstner C (2022) ”did you miss
my comment or what?”: understanding toxicity in open source discussions.
ACM, pp 710–722, DOI 10.1145/3510003.3510111

Molokken K, Jorgensen M (2003) A review of software surveys on software
effort estimation. IEEE Comput. Soc, pp 223–230, DOI 10.1109/ISESE.
2003.1237981

Novielli N, Serebrenik A (2023) Emotion analysis in software ecosystems. DOI
10.1007/978-3-031-36060-2 5

Okon-Singer H, Hendler T, Pessoa L, Shackman AJ (2015) The neurobiology
of emotion-cognition interactions: Fundamental questions and strategies for
future research. Frontiers in Human Neuroscience 9, DOI 10.3389/fnhum.
2015.00058

Title Suppressed Due to Excessive Length 31

Olsson J, Risfelt E, Besker T, Martini A, Torkar R (2021) Measuring affective
states from technical debt. Empirical Software Engineering 26:105, DOI
10.1007/s10664-021-09998-w

Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015)
Are bullies more productive? empirical study of affectiveness vs. issue fixing
time. IEEE, vol 2015-Augus, pp 303–313, DOI 10.1109/MSR.2015.35

Palomba F, Zaidman A, Oliveto R, Lucia AD (2017) An exploratory study
on the relationship between changes and refactoring. IEEE, pp 176–185,
DOI 10.1109/ICPC.2017.38

Pascarella L, Bacchelli A (2017) Classifying code comments in java open-source
software systems. IEEE, pp 227–237, DOI 10.1109/MSR.2017.63

Peruma A, AlOmar EA, Newman CD, Mkaouer MW, Ouni A (2022) Refactor-
ing debt: myth or reality? an exploratory study on the relationship between
technical debt and refactoring. ACM, pp 127–131, DOI 10.1145/3524842.
3528527

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical
debt. IEEE, pp 91–100, DOI 10.1109/ICSME.2014.31

Raman N, Cao M, Tsvetkov Y, Kästner C, Vasilescu B (2020) Stress and
burnout in open source. ACM, pp 57–60, DOI 10.1145/3377816.3381732

Raykov PP, Varga D, Bird CM (2023) False memories for ending of events.
Journal of Experimental Psychology: General 152:3459–3475, DOI 10.1037/
xge0001462

Ren X, Xing Z, Xia X, Lo D, Wang X, Grundy J (2019) Neural network-based
detection of self-admitted technical debt. ACM Transactions on Software
Engineering and Methodology 28:1–45, DOI 10.1145/3324916

Robillard MP, Arya DM, Ernst NA, Guo JL, Lamothe M, Nassif M, Novielli N,
Serebrenik A, Steinmacher I, Stol KJ (2024) Communicating study design
trade-offs in software engineering. ACM Transactions on Software Engineer-
ing and Methodology DOI 10.1145/3649598

Sanei A, Cheng J, Adams B (2021) The impacts of sentiments and tones
in community-generated issue discussions. IEEE, pp 1–10, DOI 10.1109/
CHASE52884.2021.00009

Siegmund J, Kästner C, Liebig J, Apel S, Hanenberg S (2014) Measuring
and modeling programming experience. Empir Softw Eng 19(5):1299–1334,
DOI 10.1007/S10664-013-9286-4

Singh N, Singh P (2018) How do code refactoring activities impact software
developers’ sentiments? - an empirical investigation into github commits.
Proceedings - Asia-Pacific Software Engineering Conference, APSEC 2017-
Decem:648–653, DOI 10.1109/APSEC.2017.79

Sridharan M, Rantala L, Mäntylä M (2023) Pentacet data-23 million contex-
tual code comments and 250,000 satd comments. DOI 10.1109/MSR59073.
2023.00063

Steele CM, Aronson J (1995) Stereotype threat and the intellectual test per-
formance of african americans. Journal of Personality and Social Psychology
69:797–811, DOI 10.1037/0022-3514.69.5.797

32 Nathan Cassee et al.

Stefan AM, Gronau QF, Schönbrodt FD, Wagenmakers EJ (2019) A tutorial
on bayes factor design analysis using an informed prior. Behavior Research
Methods 51:1042–1058, DOI 10.3758/s13428-018-01189-8

Stol KJ, Fitzgerald B (2018) The abc of software engineering research. ACM
Transactions on Software Engineering and Methodology 27, DOI 10.1145/
3241743

Storey MA, Ernst NA, Williams C, Kalliamvakou E (2020) The who, what,
how of software engineering research: a socio-technical framework. Empirical
Software Engineering 25:4097–4129, DOI 10.1007/s10664-020-09858-z

Swillus M, Zaidman A (2023) Sentiment overflow in the testing stack: An-
alyzing software testing posts on stack overflow. Journal of Systems and
Software 205:111804, DOI 10.1016/j.jss.2023.111804

Tan J, Feitosa D, Avgeriou P (2021) Do practitioners intentionally self-fix
technical debt and why? IEEE, pp 251–262, DOI 10.1109/ICSME52107.
2021.00029

Tom E, Aurum A, Vidgen R (2013) An exploration of technical debt. Journal
of Systems and Software 86:1498–1516, DOI 10.1016/j.jss.2012.12.052

Torkar R, Furia CA, Feldt R, de Oliveira Neto FG, Gren L, Lenberg P,
Ernst NA (2022) A method to assess and argue for practical significance in
software engineering. IEEE Transactions on Software Engineering 48:2053–
2065, DOI 10.1109/TSE.2020.3048991

Valdez A, Oktaba H, Gomez H, Vizcaino A (2020) Sentiment analysis in jira
software repositories. IEEE, pp 254–259, DOI 10.1109/CONISOFT50191.
2020.00043

Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted
technical debt on software quality. IEEE, pp 179–188, DOI 10.1109/SANER.
2016.72

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012)
Planning. DOI 10.1007/978-3-642-29044-2 8

Xavier L, Ferreira F, Brito R, Valente MT (2020) Beyond the code: Mining
self-admitted technical debt in issue tracker systems. ACM, pp 137–146,
DOI 10.1145/3379597.3387459

Xavier L, Montandon JE, Ferreira F, Brito R, Valente MT (2022) On the
documentation of self-admitted technical debt in issues. Empirical Software
Engineering 27:163, DOI 10.1007/s10664-022-10203-9

Yeung DY, Wong CK, Lok DP (2011) Emotion regulation mediates age dif-
ferences in emotions. Aging & Mental Health 15:414–418, DOI 10.1080/
13607863.2010.536136

Zampetti F, Serebrenik A, Penta MD (2018) Was self-admitted technical debt
removal a real removal? ACM, pp 526–536, DOI 10.1145/3196398.3196423

Zampetti F, Serebrenik A, Penta MD (2020) Automatically learning patterns
for self-admitted technical debt removal. IEEE, pp 355–366, DOI 10.1109/
SANER48275.2020.9054868

Zampetti F, Fucci G, Serebrenik A, Penta MD (2021) Self-admitted technical
debt practices: a comparison between industry and open-source. Empirical
Software Engineering 26:131, DOI 10.1007/s10664-021-10031-3

