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Code review is a socio-technical practice, yet how software engineers engage in Large Language Model
(LLM)-assisted code reviews compared to human peer-led reviews is less understood, especially as artificial
intelligence (AI) tools are increasingly integrated into software engineering (SE) workflows. We report a
two-phase qualitative study with 20 software engineers to understand such dynamics. In Phase I, participants
exchanged peer reviews and were interviewed about their affective responses and engagement decisions.
We also prompted them to discuss their submitted code review generated by ChatGPT 4o. In Phase II, we
investigated and introduced a new prompt to match engineers’ stated preferences for the review and probed
how content characteristics shaped their reactions. We develop an integrative account linking emotional
self-regulation to behavioral engagement and resolution. We identify a repertoire of self-regulation strategies
that engineers use to regulate their emotions in response to negative feedback: reframing, dialogic regulation,
avoidance, and defensiveness. These strategies are inspired by the engineers’ commitment to code quality
and values: accountability and growth mindset. Engagement proceeds through social calibration; engineers
align their responses and behaviors to the relational climate and team norms. Trajectories to resolution, in the
case of peer-led review, vary by locus (solo/dyad/team) and an internal sense-making process. With the LLM-
assisted review, emotional costs and the need for self-regulation seem lower. When LLM feedback aligned with
engineers’ cognitive expectations (e.g., clear structure, concise scope, neutral tone, actionable), participants
reported reduced processing effort and a potentially higher tendency to adopt. Our findings demonstrate that
LLM-assisted review redirects engagement from managing emotions and social affect to managing cognitive
load. We contribute with an integrative model of engagement, linking emotional self-regulation < behavioral
engagement — resolution, showing how affective and cognitive processes influence feedback adoption in
peer-led and LLM-assisted code reviews. We conclude that Al is best positioned as a supportive partner to
reduce cognitive and emotional load while preserving human accountability and the social meaning of peer
review and similar socio-technical activities.
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1 INTRODUCTION

The integration of artificial intelligence (Al) is growing in many processes, including software
engineering (SE) [36]. However, for decades and despite various practices being automated, SE
remains a human activity [17]. The integration of Al into a socio-technical process such as SE,
historically dominated by human control, interactions, and decision-making, may imply a paradigm
shift in the way software is engineered.

Research and products aiming to leverage Al for software engineering are targeting different core
SE activities. Research efforts have shown interest in requirements engineering, e.g., [28, 67, 78],
software design, e.g., [46, 86], construction, e.g., [58, 112], and testing, e.g., [97, 113].

Machine learning (ML) technologies have opened up the possibility to automate complex SE tasks,
traditionally entrusted to humans. Advances in neural network architectures, such as recurrent
neural networks and transformers [109], have been used to advance the state-of-the-art for many
difficult automated software engineering tasks [27, 36]. These technologies, among others, have
contributed to an array of commercial products such as Tabnine, CodeX, Github’s Copilot, and
ChatGPT.

While several code-assistant products (e.g., Tabnine, GitHub Copilot, Amazon CodeWhisperer)
focus on code-specific tasks such as Al pair programming, general-purpose Large Language Models
(LLMs) (e.g., GPT-4-class models) have been used and tested for multiple software engineering
activities, e.g., documentation, debugging, design suggestions, and code review [36, 108]. The
versatility and broad applicability of LLMs have the potential to fundamentally alter the landscape
of software engineering by either reducing the reliance on human intervention or support in tasks
that were previously considered too complex for automation [106, 116].

Although the tools landscape designated to Al-supported SE and the enthusiasm for their adoption
are increasing [1, 36], our understanding of the impact of this shift on the social and human dynamics
within SE environments remains limited [14]. SE is inherently a socio-technical practice [17] and its
engineering process is entwined with collaboration, human judgment, emotional interactions, and
decision-making [50]. As we witness a potential paradigm shift, moving from human-dominated
processes to Al-supported workflows, it is important to investigate how these changes affect the
human and social elements of SE.

Furthermore, most SE activities are collaborative. Thus, the integration of Al into the already
complex human and social workflows necessitates a thorough understanding of its implications.
Specifically, the introduction of Al in practices traditionally governed by human expertise raises
questions about the human-Al engagement and behavioral responses of practitioners like software
engineers. For example, Malone et al. [65] suggest that the most challenging changes in Al
integration are not computers replacing humans but rather people and computers working together
as integrated “superminds”. To effectively harness the potential of these “superminds” [65], it is
important to understand how software engineers engage with and respond to Al tools in their
workflows. To that end, In Phase I of our study, we asked:

RQ1: How do software engineers perceive and engage with LLM-assisted code reviews compared to
their peers?

Engagement, in the context of our study, refers to the ways and the extent to which software
engineers actively interact with, respond to, and incorporate feedback from the review process [31,
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80]. This aligns with the broader definition of engagement as “the process by which two (or more)
participants establish, maintain and end their perceived connection” [101], which emphasizes the
relational nature of the process. In code review, software engineers establish a temporal “connection”
with their reviewers (whether peers or LLMs) and sustain it through interactions to reach a
resolution to the feedback.

We opted for code review as a SE process, because it is inherently a human-centric process that
relies on collaboration, judgment, and communication [15]. This makes it ideal to evaluate how
engineers experience the engagement in an LLM-supported alternative to a process traditionally
characterized by human-intensive interactions.

In this Phase I, we set an interview study (20 interviewees) anchored in tangible review experiences.
Prior to the interviews, we asked our participants to submit a sample of their own authored code.
Then, we assigned two to three human reviewers to every author and asked them to submit written
reviews. We used the reviews during the first part of interviews to prompt our interviewees to
reflect on their experiences, perceptions, and emotional reactions still salient to them. By using a
recent and concrete experience, we grounded our data in a lived-experience context. In the second
part of the interview, we shared an LLM-generated review of the participant’s authored code to
explore how their reactions and engagement differ when interacting with Al-generated feedback as
opposed to human-generated feedback. Prior to the interview, all participants were informed with
the details of the procedure, i.e., that human- and LLM-generated feedback were to be discussed.

From Phase I analysis, we learned that engagement is multi-dimensional, spanning cognitive,
emotional, and behavioral responses. While experiencing these responses, software engineers
undertake a sense-making process of the feedback in order to make a decision regarding its adoption.
This work has been partly published in Alami & Ernst [7].

While Phase I uncovered these initial insights, it also raised follow-up questions that required
deeper understanding. To further unpack the nuances behind these engagement dimensions, such
as how engineers move from managing their emotions to resolution of feedback, or how engineers
reconcile emotional responses with their professional obligations, we designed Phase II as an in-
depth follow-up with some participants (15 out of the 20 participants from Phase I took part). This
phase aimed to elicit specific details related to Phase I constructs, and uncover nuances not fully
developed in the initial interviews. In this subsequent phase, we specifically sought to understand:

RQ2: How do software engineers regulate their emotional responses when engaging with peer-generated
versus LLM-generated feedback?

RQ3: How do software engineers process and act on feedback from peers versus LLMs?

In our prior work [7], we conceptualized the core dimensions of engagement in code review
and contrasted peer and LLM-led interactions; however, the behavioral processes and emotional
responses that inform engineers’ responses to feedback remained underexplored. RQ2 and RQ3
represent explanatory pathways we sought to explore further in Phase II. While RQ2 aims at
unpacking the emotional aspects of engagement, RQ3 dives deeper into the behavioral aspects
while seeking resolution of the feedback. RQ3 also seeks to understand further actionable behaviors
that close the engagement loop. The separation of RQ2 and RQ3 is intended to find nuanced
insights we did not observe in our previous work [7] (presented in this study as RQ1 for context).
We could not find nuanced insights in RQ1 because it is foundational, focusing on identifying and
characterizing the dimensions of engagement, rather than the emotions and behaviors that unfold
while engineers seek resolution.
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Phase I also revealed a spectrum of reactions and preferences toward LLM feedback, potentially
influencing the likelihood of adoption, specifically the high cognitive load required to process the
LLM’s feedback. This variation across participants warranted further exploration. Hence, we asked:

RQ4: How do the content characteristics of LLM-generated feedback (e.g., scope, format, clarity, tone)
shape software engineers’ engagement and adoption in LLM-assisted code review?

In Phase I, we used a baseline prompt to generate the reviews. This technique showed structural
inconsistency in the outputs. We also learned in the interviews that the reviews require more
mental effort in processing the content. Given the minimal control over the output we experienced
in Phase I and to evaluate RQ4 with reviews aligned to participants’ preferences, in Phase II, we
investigated the prompt techniques to enhance output alignment (see Sect. 4).

These RQs maintain conceptual alignment with Phase I, while seeking depth, and behavioral
specificity, all of which are in line with follow-up qualitative design [68]. In Phase II, we conducted
15 follow-up interviews with the same participants of Phase I. In this manuscript, Phase I is reported
as RQ1, using a baseline prompt. Phase II encompasses RQ2-4. Collectively, our findings (Phase I
and II) show:

- Multi-dimensional engagement in code reviews: We identified the intricate dimensions
of engagement in code review, which include cognitive, emotional, and behavioral responses
to feedback. We also identified how the introduction of LLMs could influence and shape
these engagement attributes. For example, our study shows that LLM-assisted review reorients
engagement from managing emotional and social affects to managing cognitive load, correctness
of LLM’s comments, and context alignment.

Human-AI collaboration in code review: Our study contributes to furthering our under-

standing of how software engineers perceive and are willing to collaborate with Al tools. These

insights highlight future implications of introducing Al technologies in a socio-technical
process like code review. For example, our study identifies the construct of feedback alignment,

i.e., how LLM feedback structure and tone shape cognitive ease and adoption likelihood.

- A model of engagement in code review: Our study also contributes conceptually to
the understanding of software engineering as a socio-technical practice. We introduce a
conceptual model, linking emotional self-regulation — behavioral engagement — resolution,
showing how affective and cognitive behaviors may influence feedback uptake. We also
identifies future implications on the model, as Al is increasingly integrated into SE workflows
and practices (see Sect. 6).

In the remainder of this paper, we review related work in Sect. 2, the key findings or our earlier
work [7] in Sect. 3, and describe our methods in Sect. 4. Then, we report our findings in Sect. 5,
discuss their implications in Sect. 6 and trustworthiness in Sect. 7, and conclude the paper in Sect. 9.

2 RELATED WORK

While code review is part of our research context, it is not the primary focus of our investigation.
We used code review as a lens through which we evaluated a broader and critical issue of how
software engineers perceive and engage with Al tools in a socio-technical process. In particular,
we examine how engineers respond to Al-generated feedback compared to feedback from peers.
Therefore, the scope of our related work is to draw on studies focusing on human-AI collaboration
and how software engineers engage with Al in SE processes. We set our results in the context of
existing literature, including code reviews, in a discussion section (see Sect. 6).

Human-tool integration before the advent of Al (i.e., LLM-based assistants) often took the form
of reporting automated build and test results or other static analysis checks (e.g., linting or security

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Engagement in Code Review: Emotional, Behavioral, and Cognitive Dimensions in Peer vs. LLM Interactions 111:5

scans). A simple example is the output of a compilation run and the resulting error messages. Even
this relatively simple set of tool results can be difficult for humans to understand and work with [30].
Static analysis results might take the form of reporting that a particular code file contains known
security issues (e.g., possible SQL injections). This is a considerably more actionable and explicable
report than the detailed Al-generated code reviews we consider in this paper. But even these simpler
reports are challenging to integrate into human decision-making. For example, Johnson et al. [47]
showed that reporting the factual outputs of the analysis is not sufficient for developers to adopt a
static analysis tool.

A common medium for human-tool integration is a bot, typically serving as a textual/chat
interface to the underlying static analyzer. For example, Repairnator was a bot for GitHub that was
an interface to a sophisticated program repair tool [74]. The bot’s designers found that without
explanation it was hard or impossible to get humans to accept the changes [73].

In a wider study, researchers examined bot trust and autonomy and found that individuals
have varying levels of trust in the bot’s recommendations [39]. That paper recommended that bot
interaction characteristics should be customizable. In addition, how the bot appears (i.e., avatar,
language, name) can have a big impact on human acceptance: merely revealing that something is a
bot can dramatically change human perceptions [76].

These perceptions may be changing as LLM capabilities make Al assistance more commonplace.
Nonetheless, Al Haque et al. [3] have identified several challenges, including that the Al-generated
content was found to be overly polite, overly detailed, and lacked trustworthiness. To date, most of
the work on LLMs and coding, including code review, has focused on the technical aspects of LLMs
rather than human interaction issues. Technical work looked at creating datasets of pull requests
and code problems [56], examining how to improve fine-tuning, e.g., LLaMA-Reviewer [61], and
exploring different architectures for the underlying neural networks [107].

Lack of specific context is a challenge for Al tools. Developers get annoyed when the Al does
not understand the locality of their codebase, although for boilerplate or generic code, developers
appreciate saving keystrokes [57]. As Panichella et al. [82] point out, since code review tasks
themselves are frequently changing, e.g., as the organization develops a new understanding of
concurrency, statically trained LLMs may miss evolving changes.

In sum, these studies show that achieving effective human-tool integration is about much
more than functionality [3, 56, 61]. Tool design must also address human aspects such as trust,
interpretability, and engineers’ preferences for communication style and content [39, 76]. Our study
contributes to this body of work by identifying potential shifts in software engineers engagement
in response to Al-driven code review.

3 BACKGROUND: EARLIER WORK

In our earlier study [7], we examined how software engineers perceive and engage with LLM-
assisted code reviews compared to their peers. We used semi-structured interviews with 20 software
engineers. We grounded the data collection in the participants’ lived experiences; i.e., all participants
submitted their own authored code and reviewed other participants’ code. This approach allowed
us to anchor the interviews in a recent lived and concrete experience. During the interviews, we
asked participants to reflect on both human- and LLM-generated feedback on their submitted code.

Our analysis showed that engagement in code review is multi-dimensional, encompassing
cognitive, emotional, and behavioral dimensions. Engineers often undertook a sense-making
process to evaluate the feedback before deciding whether to act on it, irrespective of whether the
feedback originated from peers or LLMs.

The contribution of this initial investigation was a conceptual model of engagement in code
review (see Fig. 1). In the case of peers, the model illustrates how engagement is influenced by both
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Fig. 1. An abstract presentation of the findings from Alami & Ernst [7], capturing engagement and how
engineers respond to feedback. The line from Reviewer Context to Peer and LLM indicates two type of
reviewers, and the ovals inside the rectangles are elements of the reviewer contexts.

the content and delivery style of feedback (e.g., content and tone), as well as the reviewer context,
which includes familiarity between the reviewer and the author, and perceived expertise of the
reviewer.

Human reviews triggered a wider spectrum of emotional reactions, either negative or positive,
depending on tone and perception of the content. In contrast, the engagement with LLM feedback
often reduced emotional taxation due to the consistently polite tone of the LLM. However, LLMs
introduced higher cognitive load due to extensive and sometimes less contextualized feedback.

These findings laid the groundwork for the current study, which seeks to deepen our understanding
of the behavioral mechanisms underlying these engagement dynamics. Building on this foundation,
the present study extends our earlier work in three ways. First, it moves from an abstract explanation
of engagement to examining how its dimensions, emotional, and behavioral processes, unfold in
both peer-led and LLM-assisted reviews. Second, in this extension, we introduce the full pathway,
from emotional response to behavioral engagement and resolution. Third, we investigated an
improved prompt design in Phase II to test how tailoring LLM feedback to engineers’ preferences
may influence their cognitive effort, perceived alignment, and likelihood of adoption. Collectively,
these extensions improve the abstract model of engagement from our previous work [7] into a
process-oriented and detailed model that captures the dynamics of how engineers regulate, interpret,
and act on feedback in increasingly hybrid human-AI SE.

4 METHODS

We opted for a 2-phased interview study to investigate our RQs. This choice is better suited
when the phenomenon under study requires uncovering complex social and behavioral nuances
that influence human judgment and interactions in socio-technical processes [17, 54]. Interviews
are also a good tool to access perspectives and insights ingrained deeply in personal beliefs,
attitudes, and behaviors [55, 100]. By tapping into these core personal and deeply-seated cognitive
constructs [55, 100], we aim to collect data aligned with our study objectives.

Phase I served as a foundational exploration, with substantial depth, and Phase Il as an elaborative
follow-up of our initial findings. In Phase I, we identified the core constructs of engagement and
the interplay between feedback source (LLM vs. peer) and engineers’ engagement and responses.
These findings also revealed the need for nuanced understanding of the engagement with the LLM,
mainly fine-tune our LLM prompt engineering strategy. Accordingly, in Phase II, we carried out
follow-up interviews to collect more data and conduct further analysis to (1) examine how engineers
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Table 1. Interviewees’ characteristics. “NB” refers to non-binary/third gender. Asterisk (*) indicates those
who participated in the follow-up interviews of Phase II.

# | Role | Exp. | Gender | Industry sector | Language | Reviewers | Country
P1(*) | Sr. Soft. Eng. 6-10 years | Male IT Services JavaScript | P10, P19, & P20 | Germany
P2 (*) | Sr. Soft. Eng. 6-10 years | Male Consulting Java P1, P3, & P19 UK

P3 (%) Sr. Soft. Eng. >10 years | Male Telecom Python P4,P12, & P18 UK

P4 (%) Software Eng. | 3-5years | Male Telecom Python P3, P12, & P20 Germany
P5 Software Eng. | >10 years | Male IT Services C# P11 & P17 USA

P6 (%) Software Eng. | 6-10 years | NB Finance Java P6, P11, & P14 Netherlands
P7(*) | Tech Lead >10 years | Male Finance Java P11 & P14 Canada
P8 (%) Software Eng. | 3-5 years Male Aviation Python P9, P17, & P20 Spain

P9 DevOps Eng. | >10years | Female | Health Care Python P8, P13, & P20 | UK

P10 (*) | Software Eng. | 1-2 years | Male IT Services Python P3,P12, & P18 | UK

P11 Software Eng. | 3-5years | Female | Finance Java P6 & P7 South Africa
P12 (*) | Sr. Soft. Eng. >10 years | Female | Finance Python P4,P12, & P19 | UK

P13 (*) | Sr.Soft. Eng. | 6-10 years | Male IT Services TypeScript | P16 & P17 Ireland
P14 (*) | Software Eng. | 6-10 years | Male IT Services Java P5, P8, & P13 Portugal
P15 Sr. Soft. Eng. 3-5years | Female | Government Serv. | Python P16 & P18 Italy

P16 (*) | Software Eng. | 1-2 years | Male IT Services JavaScript | P6, 13, & P21 Portugal
P17 (*) | Software Eng. | 3-5years | Male Media & Entert. Python P5, P8, & P9 UK

P18 Software Eng. | 6-10 years | Male IT Services C++ P2, P12, & P15 UK

P19 (*) | Sr. Soft. Eng. 6-10 years | Female | IT Services Java P2 & P10 Germany
P20 (*) | Software Eng. | 3-5years | NB IT Services JavaScript | P1 & P10 Ireland

rationalize their behavioral responses to LLM feedback when aligned with their preferences, (2)
revisit key constructs such as cognitive load and sense-making in more depth in LLM-assisted
review, and (3) fine-tune our LLM prompt engineering strategy to accommodate the divergent
preference for feedback style and format we learned in Phase I. The prompt engineering experiment
allowed us to align the LLM feedback with the participant’s preferences and collect additional data
to compare with Phase I.

In the remaining of this section, we describe our research process, including both phases, and
methodological decisions and their implementations. We commence in next subsection (Sect. 4.1)
by detailing the recruitment process of Phase L. In subsection 4.2, we explain the data collection
process and methods we used in Phase I. Then, in subsection 4.3, we outline the follow-up interview
process of Phase II. We document our prompt engineering experiment of Phase II in subsection 4.4
and the data analysis of both phases in subsection 4.5. Section 7 is dedicated to our trustworthiness
methods.

4.1 Phase I: Interviewees recruitment & selection

To recruit our interviewees, we used Prolific!, a research market platform. Given that the platform
does not verify nor evaluate self-reported skills [10], we carried out a pre-screening process to
qualify our potential participants, following the guidelines suggested by Alami et al. [10].

Alami et al. [10] recommend using an iterative and controlled prescreening process, using task-
oriented questions that go beyond theoretical understanding to help filter genuine engineers from
those who may rely on external resources, such as Googling or prompting an LLM for answers.

In the pre-screening questionnaire, we used a programming task, a critical-thinking question,
and a question for participants to share a problem-solving scenario from their own experience.
We iteratively and manually assessed the answers [10]. First, we evaluated the answers for Al-
generated content using ChatGPT 4o0. Subsequently, we manually evaluated the content’s quality
and coherence [10]. In this initial pre-screening, we capped the number of participants to 500. We

Thttps://www.prolific.co/
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iteratively assessed the pre-screening questionnaire answers as they were submitted. After the
assessment, we ended up with 353 qualified engineers.

Then, we ran a second and final pre-selection questionnaire, where we asked for further
demographic data, programming language skills, and whether the participants were willing to
participate in an interview study. We limited this pre-selection to 100, and 76 agreed to participate
in the interviews.

This two-phased approach had different objectives. While in the initial prescreening, we focused
on evaluating potential participants’ skills, i.e., whether they were genuine software engineers [10],
in the second pre-selection, we wanted to know whether those qualified software engineers were
willing to take part in an interview study, collecting further demographic data and the programming
languages they may submit their code and review other participants’ codes. We paid £0,50 for
the initial prescreening and pre-selection and £60,00 (up to 60 minutes) for the participation in
the first interview, including the time spent to review other participants’ code and £30,00 for the
second phase follow-up interviews (30 to 40 minutes) (Phase II). The selection process took place
in August 2024. The questionnaire used in the pre-selection is available on the replication package
(see Sect. 4.7).

Table 1 documents our participants’ characteristics, providing their current roles, experience
levels, gender, industry sectors, and the programming languages they opted to submit their code in.
The column “Reviewers” lists the reviewers assigned to each participant for the peer-led reviews.
We managed to assign to each participant a minimum of two reviews. Even though we aimed for
three reviews per participant to align with industry and open-source community practices [4, 9],
we did not manage to meet this expectation due to the varying programming skills and language
preferences among participants, which limited the pool of suitable reviewers for certain code
submissions. In assigning reviewers to authors, we aimed for a diverse range of experiences and
backgrounds. For example, P1, a senior software engineer with an experience of 6-10 years, was
assigned reviewers with experiences ranging from less than two years to ten years. This diversity
in reviewers’ experience levels was intentionally designed to enrich our data with varying levels of
expertise and perspectives and feedback from both novice and seasoned reviewers. We also aimed
to be diverse in gender and country in the reviewers selection. For example, two females and one
male from two different countries reviewed P18.

4.2 Phase I: Data collection

We designed a research process that mirrors similar professional practices, yet within the constraints
inherent to a research environment. For example, our participants remained anonymous to each
other, opposed to a professional context where authors and reviewers are known to each other. For
Phase I, upon the completion of our recruitment and selection process, we asked our participants to
submit a code they had authored. Then, we assigned to each author two to three reviewers (drawn
from other participants in the study, see Table 1) and asked them to submit a written review as
if they were to conduct a peer review in their professional contexts. Prior to the interviews, we
shared the peer reviews with the authors. Part of the recruitment process, we asked the participants
permission to prompt ChatGPT 4o to review their submitted code and informed them that we
would share the LLM-generated reviews in the interview for discussion.

In the first part of the interview, we used the reviews (feedback received from other participants
on the interviewee’s code) as catalysts to prompt the engineers to explain and elaborate further on
their responses to our questions. In the second part, we shared an LLM-generated review of the
same code authored by the interviewees to prompt them to share their attitudes and understand
how they would engage with it compared to human-authored reviews. This approach ensures
that we capture the nuanced differences in how software engineers engage with and respond to
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both human and LLM-generated feedback. First, we grounded the discussion in their real-world
practices, assigned task, and the study’s review experience. Then, we prompted them to contrast
their earlier claims when reviews are LLM-generated. This dual-method strategy, combining data in
both engagement with peer-conducted and LLM-generated reviews, aligns with the study objectives.
The process was explained to participants during the recruitment in details prior to the interview.
Figure 2 summarizes Phase I process.

We opted for ChatGPT for its wide accessibility and familiarity among a diverse audience. In
Phase I, to generate ChatGPT reviews, we used this prompt: “You are an expert of [the programming
language]. Provide a thorough review of the attached code.” This prompt design aimed to generate
expert-level feedback, relatable to what a human reviewer might offer [21]. Such feedback is what
developers would expect from knowledgeable peers [21, 59].

Our interviews were semi-structured. Although we designed an interview guide, its purpose was
to guide the conversation while allowing fluidity by prompting the interviewee to elaborate and
explain further based on their responses. We also used examples from the reviews they received to
engage them in deeper reflection of how they perceived the comments they received either from
the LLM or other participants. Table 2 illustrates examples of the questions we asked. The full guide
is available in the shared documents package (Sect. 4.7).

All interviews were conducted using Zoom and lasted 40-60 minutes, with a total of 17h12min
of audio. After transcription, the audio generated a total of 271 pages verbatim, an average of
approximately 14 pages per interview. The first author conducted the interviews in the first and
second weeks of September 2024. We used Otter.ai?, an online transcription tool, to transcribe the
audio recordings.

4.3 Phase Il: Follow-up Interviews

Upon the completion of Phase I data analysis (see Sect. 4.5), we decided to conduct follow-up
interviews with Phase I participants. While Phase I provided initial, yet interesting insights, in this
follow-up phase, we sought additional data to elaborate the empirical support for RQ4 and enrich
RQ1-RQ3 with additional evidence.

Figure 3 summarizes the process we followed in Phase II, which integrates a prompt engineering
experiment with follow-up interviews. The figure illustrates how we first experimented with
individual and combined prompt engineering techniques, ultimately selecting a combined “Role

Zhttps://otter.ai/
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Table 2. Key parts of the interview guide (Phase I)

Introduction

Can you please introduce yourself? (Include educational background, current role, and years of experience in software
development.)

Section I: Approach to reviewing code

Are there any coding standards or best practices that you kept in mind during the reviews we assigned to you?

What did you consider most when you wrote your feedback for the assigned code?

Section II: Engagement with peers’ feedback on authored code

How do you typically feel when you receive feedback on your code from peers?

In the feedback you received from the other participants, what elements of the feedback do you find most useful or
valuable? And why?

Section III: Engagement with LLM-generated review

How did you feel when you first read the LLM-generated review of your code?

Would you respond and react to the LLM-generated feedback the same way as you do to human’s feedback?

Conclusion

Based on your experiences in this study, how would you summarize the main differences between peer and LLM-
generated code reviews?

Is there anything else you would like to share about your experience in this study or with code reviews in general?

and Instruction” prompting strategy to generate LLM reviews aligned with participants’ preferences.

These individual tailored reviews were then shared during follow-up interviews (i.e. each participant’s
code had a new individually tailored review aligned with their preferences), enabling us to explore

how alignment in feedback format, tone, and purpose may influence cognitive load, sense-making,

and behavioral responses compared to Phase 1.

Given that the intent of Phase Il is to elaborate and expand on constructs identified in Phase I
and collect new data for RQ4, we adopted a confirmatory yet exploratory structure. We organized
the guide using a layered approach, aligned with RQ2-RQ4 while remaining open to new insights,
using prompting questions. The design of the interview guide followed these principles: (1)
Thematic anchoring: We aligned the structure of the guide with our RQs (cognitive load and
sense-making, emotional regulation, behavioral responses) [54, 104]. (2) Hypothesis probing;:
Drawing from our Phase I themes, we constructed hypothesis-informed questions, while avoiding
leading formulations [54, 104]. (3) Personalized grounding: We incorporated claims from the
participant’s own Phase I transcript and feedback received from other participants and the LLM,
to stimulate richer elaboration [54, 104]. (4) Contrast & reflection: We used reflective prompts
throughout the interview to elicit data to compare past and current experiences, and whether any
changes in perceptions occurred since Phase I [54, 68, 92].

Accordingly, we structured the guide around four sections: (1) emotional regulation (RQ2),
(2) behavioral engagement (RQ3), (3) sense-making and cognitive load in LLM-assisted reviews
(RQ4), and (4) reflective reappraisal. Table 3 summarizes the structure and examples of our Phase
IT questions.

We contacted all Phase I participants and invited them to take part in the follow-up phase. Fifteen
of them accepted ((*) in Table 1 indicates Phase II participants). The follow-up interviews took
on average 30 minutes each and generated seven hours and forty minutes of audio. The audio
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Prompt Engineering Follow-up
. LLM-led Code Review .
Experiment Interviews
. . . ChatGPT 5 prompted to LLM-
Exper.lmentlng with Role and Instruction review the submitted code. generated
various prompt prompting techniques Reviews were shared during — code Interviews D
engin eerin g tec hnt ) the interviews review Partidipant R ey

"You are a senior software engineer and expert in [programming
~ language]. Provide a review of the following/attached code. Adhere
SS to these requirements: Format: [concise, bullet points, etc.]. Tone: 1
1 [educational, actionable, friendly, constructive, professional, etc.]. 1
I Purpose: [identify all types of errors only, how to correct them, and |
I explain why, identify errors only, identify errors and suggestions of |
| improvements, etc.]. Cognitive load: [requires minimal mental effort |
1 to process; comments should be easy to understand and 1
1 actionable, or not relevant.” 1

Final Prompt

Fig. 3. Phase Il Research Process.

generated a total of 121 pages verbatim after transcribing, an average of approximately eight pages
per follow-up interview. The first author conducted the interviews in August 2025.

4.4 Phase Il: Prompt Engineering

In Phase I, we learned that the engineers in our sample had varying expectations regarding the
format, style, and tone of LLM-generated reviews. Content-related features, such as verbosity,
generic positivity, and over-explanation in the LLM’s reviews, led to disengagement.

To better align the LLM’s feedback with engineers’ expectations, to address RQ4, and provide a
contrast with Phase I, we reviewed the literature on best practices in prompt engineering [24, 98].
Then, we carried out an evaluation of selected prompt engineering techniques to evaluate their
efficiency in generating the most relevant outputs for the follow-up phase.

Analytically, the purpose of this prompt engineering experiment is to identify the best techniques
to prompt the LLM to generate feedback aligned with our participants’ individual preferences. More
specifically, to examine variation in the concepts we identified in Phase I, mainly the relationship
between the cognitive load required to process the feedback and the sense-making process that
follows when the feedback is aligned with the engineers’ preferences for format, tone, and the
purpose of the review.

To systematically evaluate and compare prompt engineering techniques in generating LLM-based
code reviews that align with the diverse preferences identified in Phase I, we evaluated a few prompt
engineering techniques, namely Zero-Shot [60], Instruction [72], and Role prompting [24, 114, 115].
Each technique was evaluated in isolation as well as in combination with the others. We documented
our prompt engineering experiment in an audit trail report, available in our replication package
(see Sect. 4.7). The link to ChatGPT chat we used for both experimentation and generating the
reviews of Phase II can be found here?.

We intentionally limited our experiment to prompting techniques that demonstrated performance
across broad task types. Based on our review of prompt engineering literature [24, 98] and Phase I
findings, we focused on achieving participant-aligned feedback, seeking a clear link between prompt
structure and output variation. This focus favored Zero-Shot, Instruction, and Role prompting

Shttps://chatgpt.com/share/6890abe6-5af0-800c-a8ae-e065d90e 1434
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Table 3. Key parts of the follow-up interview guide (Phase II)

Introduction & shifts in perception since Phase I

Reminder of prior participation and purpose of follow-up.
Participant was invited to reflect on prior interview experience and any updates.

Have you integrated Al in your workflow since our last conversation? In what ways?

Section I: Emotional self-regulation (RQ2)

You previously mentioned [we used quote from Phase I indicating emotion]. Can you tell me more about how you
typically handle such reactions during reviews from peers?

Do you recall any recent experiences, peer or LLM, where you felt the need to manage your emotions? And how do you
manage your emotions in the case of negative feedback?

What helps you respond constructively when feedback feels off or hard to accept?

Section II: Behavioral engagement (RQ3)

Can you describe what you usually do after receiving feedback from a peer? And what would you do if we replace your
peer with an LLM like ChatGPT?

When you received feedback from the LLM and other participants in this study, did you act on one type of feedback
more readily than the other? Why?

Section III: Cognitive load and sense-making of LLM review (RQ4)

How did you go about making sense of the feedback from ChatGPT compared to your peers?
Were there instances where the LLM feedback felt harder or easier to interpret? Can you walk me through one example?

With this new generated feedback from the LLM, have your perceptions of the usefulness or clarity of Al feedback
changed?

Section IV: Shifts in perception since Phase I

Have your views on Al in code review changed since the first interview?
Would you prefer to receive more LLM-generated feedback, less, or about the same? Why?

What do you now believe makes feedback — Al or human — actionable or meaningful?

Conclusion

Would you like to share anything we have not covered in the interview?

Reconfirm consent for data and transcript use.

as first candidates. Other techniques, such as Retrieval-Augmented Generation, Tree-of-Thought
prompting, or AutoPrompt, were not considered at first because they are less controllable for
variation like tone and style alignment [111]. After testing our initially selected prompts (i.e.,
Zero-Shot, Instruction, and Role prompting), we did not deem pursuing other strategies warranted;
our selected strategy, Instruction + Role, has yielded superior results.

To carry out the experiment, we selected examples from the code submitted in Phase I. We
selected a representative sample of six code snippets, ensuring variation in programming language
(e.g., Java, Python, JavaScript), complexity, and domain (e.g., finance, logic-heavy, algorithmic). This
diversity reflects the variation present in Phase I code dataset. This variety also strategically sought
to identify any changes in feedback style that may surface in the LLM outputs. Table 4 summarizes
selected code for the experiment and the selection rationale.

We defined four criteria inspired by Phase I findings on LLM feedback usability. We used these
criteria as requirements on the prompts to instruct the LLM on format, style, and tone of the output.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Engagement in Code Review: Emotional, Behavioral, and Cognitive Dimensions in Peer vs. LLM Interactions 111:13

Table 4. Selected code samples for prompt engineering experiment

P# Domain Complexity Language Rationale for Selection

P1 Version Control Utility Medium JavaScript  Illustrates CLI (command line interface) interaction
and semantic versioning logic; suitable for evaluating
clarity and conciseness in feedback.

P2 Banking / Financial Services High Java Contains business logic, custom exceptions, and unit
tests; useful for testing review purpose alignment
(educational vs. corrective).

P5 3D Rendering / Game High C# Includes graphics buffer handling and object-

Engine oriented complexity; selected to test LLM tone and
completeness in abstract domains.

P12 Mathematical Algorithms Low Python Basic algorithmic function; serves as a baseline for
evaluating verbosity and tone in LLM-generated
feedback.

P13 Cloud Function Routing Medium TypeScript  Decision logic for backend lambda function execution;

suitable for testing clarity and error-handling
feedback.

For example, we identified “format” as a variable in the prompt, because we wanted to influence the
LLM format when the participant has preference for a specific format, like bullet points. Similarly,
“actionability” was identified to instruct the level of specificity required in the feedback. Table 5
documents the criteria we used in the experiment.

Table 5. Evaluation criteria for prompt engineering outputs

Criterion Description
Format This criterion is to instruct the LLM the structure and the format of the feedback.
Actionability Does the review provide specific, implementable suggestions that the developer can act

Tone Alignment

Cognitive Load

Purpose Fit

on immediately?

Does the tone of the review reflect the participant’s preferences (e.g., polite, direct,

collaborative)? We used this criterion to instruct the LLM to use a specific tone in

phrasing the feedback.

Is the review concise enough to reduce unnecessary mental effort while still delivering

meaningful content? We used this variable to indicate to the LLM that it must cater for
this requirement when the engineer prefers low mental load in processing the feedback.

Does the review serve the participant’s intended purpose (e.g., contextualized feedback,

coding improvement, educational guidance)? We used this variable to instruct the LLM
the engineer’s preference for the purpose of the feedback. For example, in Phase I, some
of our participants wanted straightforward feedback to improve code; others wanted also

a feedback that they can learn from.

We tested every technique in isolation sequentially; Zero-Shot, followed by Instruction, then
Role prompting. In the final tests and based on earlier results, we combined Instruction and
Role prompting. This sequence mirrors a layered prompt design strategy [72]. We started with
minimal scaffolding and progressively added structure and control to the prompt [71, 72]. This
strategy allowed us to observe the incremental effect of each technique and control for confounding
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Table 6. Link to ChatGPT 4o generated code review for Phase Il followup interviews.

# LLM review  Participant feedback on the LLM content

P1 Link “.. prefers the new format [compared to Phase I]”

P2 Link “This one is a lot better than the previous one. It’s a lot more concise and really easy to read in the
way that it’s like sectioned. It is really nice as well.”

P3 Link “This format is much better, easy to process.”

P4 Link “This one is better because I think it contains like the key points of the last one, but it’s more
compact, and to me, I find it easier to read.”

P6 Link “... this [ChatGPT 4o review] is very impressive and interesting.”

P7 Link ‘T like it, because it’s very straight to the point.”

P8 Link “.. they [errors] are valid things ... the older one [Phase I review] had more things.”

P10  Link “T was expecting these errors, spot on! And straightforward.”

P12 Link “Clean but I would have liked more details. But I can follow up with prompts.”

P13 Link ‘T can see the verbosity is reduced with this prompt. I prefer this one, easy to digest.”

P14 Link “I think it’s much better than last time ... It explains the problem concisely, then tells what the fix
should be and displays an example. And does this a lot, and this is very helpful”

P16  Link “Every section is well formatted ... I do not like the emojis! The best practices section is good but too
short; we should have used educational.”

P17  Link “It matches pretty well. Honestly, yeah, it’s pretty good.”

P19 Link “It’s shorter and easier to read.”

P20 Link “Right to the point, right? It’s just the critical ones, and the second one, just for best practices. I

would love it if somebody gave me this review.”

Note: Rows include only participants marked with an asterisk (*) in Table 1, showing only Phase II follow-up participation.

interactions. A confounding interaction occurs when two (or more) prompt techniques are used
together and it becomes unclear which one caused the observed effect [72].

By testing each technique in isolation, we managed to understand better its unique contribution
to review quality and its ability to align with our criteria (Table 5), before exploring combinations
(e.g., Instruction + Role). This modular comparison provided insights into how each prompt strategy
affects our evaluation criteria (format, actionability, purpose fit, and tone), allowing findings from
early stages of testing to inform adjustments or combinations in later stages. Our approach also
aligns with established literature. For example, Mishra et al. [72] and Wei et al. [111] recommend
starting from basic prompting to isolate effects before layering techniques.

We found that combining instruction and role techniques yields superior results. Upon the
completion of the evaluation of prompt techniques for RQ4, we re-generated ChatGPT 4o reviews
for the code submitted in Phase I. The newly generated reviews were used in the follow-up
interviews. Our final prompt is:

You are a senior software engineer and expert in [programming language]. Provide a review of the
following/attached code. Adhere to these requirements: Format: [concise, bullet points, etc.]. Tone:
[educational, actionable, friendly, constructive, professional, etc.]. Purpose: [identify all types of errors
only, how to correct them, and explain why, identify errors only, identify errors and suggestions of
improvements, etc.]. Cognitive load: [requires minimal mental effort to process, comments should be
easy to understand and actionable, or not relevant.]

Table 6 documents Phase II participants, the links to their LLM review, using the new prompt,
and quotes from the followup interviews to illustrate their feedback on the new LLM’s review.
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4.5 Phasel & II: Data Analysis and Integration

Table 7. Example of pattern codes and their corresponding First Cycle codes

Pattern codes First cycle codes Examples from the data
Reframing feedback ‘I try to not have any bad feelings about it, because in the end, I
feel it is something that I can draw good things from and the aura
Self-regulation of use from me. So I always try to, you know, be open towards
strategies criticism and not have, like, a negative emotional reaction to it”

(P4, Phase I).

Avoidance strategies “So personally, it doesn’t work with me, like, if someone is more
like firm and maybe aggressive, I don’t like that when people do
that to me, so I try not to deal with other people” (P16, Phase II).

Reciprocity norms “.. you know they’re making an effort. They want to see you do
well, and because they want to see you do well, you’re inspired

Social calibration to do well.” (P7, Phase I).

Relational climate “I do not have a bad environment overall with my co-workers, so
it’s overall friendship wise and overall good and healthy. But that
there could be some conflict in real life. And then you get actual
comments, which are a bit harder in the language; depending on
how healthy the relationship is” (P1, Phase II).

We adopted a constructivist stance [26], which aligns with our objective to understand software
engineers’ perceptions and experiences with LLM-generated feedback compared to their peers.
By adopting this stance, we recognize that knowledge and meaning are actively constructed by
individuals through their experiences and interactions [26].

We began by re-analyzing the Phase I interviews inductively. After completing the follow-up
interviews, we analyzed the new dataset using a hybrid analysis approach: explicitly integrating
themes derived from Phase I (deductive) with those emerging from data (inductive) [37].

In Phase II analysis, we treated our existing Phase I pattern codes as a provisional coding
framework [37, 92]. We applied this framework deductively to Phase II data while remaining open
to inductively identifying codes for any new concepts emerging in the follow-ups. Each Phase I
theme was used as a provisional code [92]; excerpts from Phase II were examined to determine
their degree of fit, expansion, or divergence. This allowed us to confirm and track the stability,
expansion, or contraction of Phase I constructs over time. Inductively identified codes that did not
map onto an existing Phase I pattern code were consolidated into new pattern codes.

We did not identify any divergence from Phase I themes; however, we enriched them with
additional data. For RQ4, we identified new themes (e.g., aligned feedback and associated sub-
themes). We also confirmed similar sense-making patterns for peer-led and LLM-assisted reviews;
see Sect. 5 for detailed findings.

In both phases, we followed Miles et al. [68] recommendations for the analysis process. First, we
conducted a preliminary First Cycle analysis. In this early stage of the analysis, we selected “chunks”
of data that are pertinent to our RQs and assigned them codes [68, 92]. Using an inductive strategy
for Phase I dataset and a hybrid for Phase II, this condensing yet analytical exercise allowed us to
reduce the data corpus into meaningful concepts [69].

In the Second Cycle that followed, we synthesized all the First Cycle codes into “Pattern codes” [68].
In this integrative activity, we looked for patterns across the previous cycle’s codes by identifying
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recurring themes that linked different codes together; whether through similarity, processual
relationship, or complementary contributions to a cohesive construct [68]. This process allowed us
to develop higher-level constructs and abstract our understanding of the underlying phenomena.

While the First Cycle and Second Cycle allowed us to generate constructs to answer our RQs,
we needed to further understand the relationship amongst them. To this end, we used a “causal
network” analysis [68] to identify connections between the “Pattern codes”. In this activity, we
examined how “Pattern codes” influenced, conditioned, or intersected with one another in the
data [68]. These relationships allowed us to design our proposed models, i.e., figures 4, 5, and 6, in
Sect. 5.

Table 7 documents an example of some of our Pattern Codes and their corresponding First Cycle
codes. The final column provides examples from the data to illustrate the codes.

4.6 Phasel & II: Trustworthiness Techniques

Reliability was ensured through iterative peer review of codes, consensus-building, and member
checking [19]. Phase I and II coding cycles were conducted by the first author. Then, iteratively, the
second and fifth authors reviewed the codes and Pattern Codes, provided comments, and proposed
new and alternative codes, until a consensus was reached. The first author then revised and offered
a final set of codes and Pattern Codes. This “reliability check” [26, 68], allowed us to validate our
coding judgments and settle our discrepancies, resulting in more trustworthy interpretations.

During the re-analysis, we monitored thematic saturation [13, 44, 69, 75]. We iteratively compared
data and emerging themes to assess saturation points [75]. Throughout the analysis, we managed
to observe when our Pattern Codes reoccur strongly in the data [20], hence reaching saturation. We
documented this process in our shared documents package. Miles et al. [68] recommend thematic
saturation to be evaluated at the Second Cycle level, i.e., Pattern Codes or themes. We considered
saturation reached when additional data did not yield new Pattern Codes or substantive extensions
to existing ones [68, 92]. We share our saturation monitoring spreadsheet in our shared documents
and data archive, see Sect. 4.7. Most of our themes reached saturation at the 9th interview (Phase I)
for RQ2-RQ3 and follow-up interview (Phase II) for RQ4. RQ1’s saturation was not monitored
directly, as it represents a high-level synthesis of the phenomena explored in RQ2-RQ4; its
saturation is inherently evidenced through the underlying Pattern Codes of RQ2-RQ4.

Upon the completion of the analysis, we organized a member checking [19] activity to collect
feedback from our interviewees on our findings (see Sect. 7 for further details).

Informed consent. Informed consents from the interviewees were obtained prior to the data
collection in accordance with best practices and institutional requirements of the authors’ institutions.
We obtained consent in Phase I and II, including permission to record and transcribe the interviews,
and to use anonymized quotations for research dissemination. Participants were informed about
the purpose of the study, the procedures involved, the voluntary nature of participation, their right
to withdraw at any time without consequence, and the measures taken to ensure confidentiality
and secure data handling. Any identifying information in the transcripts was anonymized for
reporting in publications. In cases where adequate anonymization was difficult or not possible, the
corresponding data were excluded. Participants also agreed to publicly share the anonymized version
of the interview transcripts and submitted code and reviews, as part of the study’s supplementary
material. As part of the consent, participants also agreed that their code would be used as input to
prompt an LLM to generate reviews for it.
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4.7 Shared documents and data

We share our data and other artifacts here?. Interviewees consented to sharing anonymized interview
transcripts. In this archive, we share:

- Phase I - Participants’ code: Source code submitted by participants.

- Phase I - Peer-led code reviews: Reviews authored by participants.

- Phase I - ChatGPT 4o reviews: LLM-generated reviews used in Phase I. For Phase II, the
links to ChatGPT 4o reviews are available in Table 6.

- Phase I & II - Interview guides: Protocols and question used for both phases in separate
interview guides.

- Phase II - Prompt engineering experiment: Report documenting the prompt evaluation
procedure used in Phase II, including links to our tests.

- Data saturation: Spreadsheet tracking saturation assessment across interviews.

- Member checking: Questionnaire used for validation and the anonymized responses
collected from participants.

- Phase I - Interviews: Anonymized transcripts (all 20 participants).

- Phase II - Follow-up interviews: Anonymized transcripts (excluding P3, P10, P12, and P14
due to anonymization risks).

- Codebook (combined Phase I & II analysis): Pattern codes and First Cycle codes, organized
by RQ2-RQ4. (RQ1 omitted because it synthesizes RQ2-RQ4.)

5 FINDINGS

Recall our RQ1, which sought to identify the high-level engagement patterns of software engineers
in human-led and LLM-assisted code reviews. Figure 4 synthesizes our proposed high-level model
of engagement in the context of code review. While our previous work [7] conceptualized the
core dimensions of engagement and contrasted peer- and LLM-assisted reviews, in this study we
unpacked the nuances of engagement. Our findings unfold a model shaped by three interdependent
layers: Emotional Self-regulation (RQ2), Behavioral Engagement (RQ3), and LLM Content
Characteristics (RQ4). These layers interact dynamically to influence the outcome of the review,
i.e., Resolution & Implementation.

Our findings cohere around a dominant loop: (1) Emotional Engagement — (2) Behavioral
Engagement — (3) Resolution & Implementation. This loop captures the prevailing sequence
we observed; in practice, emotional self-regulation and behavioral engagement can be recursive
and partially overlapping, especially when engineers regulate through dialogue (see Sect. 5.1-5.2).
Stages (1)-(2) are more noticeable in human-led review, whereas (3) applies to both human-led and
LLM-assisted contexts.

In the case of feedback from peers, when feedback is perceived as negative, engineers first
self-regulate their emotions in response to feedback, which in turn moderates their readiness to
engage; that readiness initiates a resolution stage (e.g., dialogue, negotiation) through cycles that
may converge on the adoption of feedback’s suggestions, often partially and selectively adopted
after negotiation with the reviewer. As part of the resolution process, engineers may learn from
the feedback, and in some cases, they may codify certain elements of it into shared team practices.

When engaging with review comments generated by an LLM, the interpersonal affect and social
dynamics are reduced. However, the content characteristics of LLM reviews (structure, concision,
tone, and “why” rationales) moderate cognitive accessibility of the review content and thus the
likelihood of adoption. Despite the content styles being aligned with the engineers’ preferences, the
tension between the LLM’s depersonalized neutrality, low emotional cost, and peers’ interactional

“https://doi.org/10.5281/zenodo.17597021
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Fig. 4. High-level model (RQ1) of code-review engagement: emotional engagement <> behavioral engagement
— resolution and implementation (adoption, learning and team-norm codification); LLM content features
moderate cognitive accessibility, improving adoption likelihood.

and relational needs persisted. The need for human connection, social validation [12], and perceived
human superiority in reviewing code also constrained some engineers’ willingness to fully adopt
LLMs as reviewers.

Using this high-level model, we align the subsections that follow with RQ2 - Emotional
Engagement, RQ3 - Behavioral Engagement, and RQ4 - LLM’s Content Characteristics,
while distinguishing human-led review dynamics from LLM-assisted ones. Given that Fig. 4 is an
integrative level of our findings, we do not present separate evidence for RQ1 in this subsection.
Instead, RQ1 is substantiated by the empirical results for RQ2-RQ4: emotional engagement (RQ2)
and behavioral engagement (RQ3). In RQ4, we present how LLM content characteristics moderate
cognitive accessibility and the likelihood of adoption. In the subsections that follow, we evidence
each layer. When we use quotes from the interviews, we use Phase I or II in reference to which
phase of the study the data was collected.

5.1 RQ2 - Emotional Engagement

In response to RQ2, we identified a model for emotional engagement (i.e., Fig. 5). Our findings
show that feedback from peers triggers an affective response that can elicit either negative (e.g.,
frustration, disappointment) or positive (e.g., pride, “feeling good”) responses. When feedback is
perceived as negative, engineers (code authors) seem to manage their emotions through a self-
regulation process, the intrapersonal process through which they control their emotional responses.
It is the hinge between feeling and doing; it appears to shape the engineers’ behavioral engagement
(RQ3) in the pursuit of a resolution for the feedback.

In this regulation process, engineers draw on a repertoire of self-regulation strategies (e.g.,
reframing the feedback, engaging in dialogue, avoiding the reviewer, or, at times, becoming
defensive) to resolve it. Some of these strategies are Anticipatory (i.e., avoidance), enacted
proactively to limit exposure, in anticipation of a known reviewer based on past experiences
of perceived high-cost emotional encounters (e.g., harsh or overly picky reviews). On the other
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Fig. 5. RQ2 - Emotional Engagement.

Legend: Rounded rectangles denote constructs or strategies; ellipses denote transient states/phases. Solid arrows indicate
activation flow; dashed arrows indicate value-driven influence. Amber ovals distinguish between feedback when perceived
positive vs. negative.

hand, reactive strategies (reframing, dialogic, and defensive) are activated upon receiving and
reading the feedback.

Self-regulation strategies are value-driven (e.g., peer harmony, accountability) or anchored in
engineers’ motivation to improve their code quality. The outcome of this regulation phase is
behavioral readiness, a state that may lead to a resolution. In sum, the findings of RQ2 map a
typical pathway from affective activation — self-regulation strategy (when feedback is perceived as
negative) — positive reinforcement (when feedback is perceived as positive) — (in RQ3) behavioral
engagement — resolution and implementation. However, as we discuss in Sect. 5.2, this transition is
not strictly linear; when dialogic regulation is activated, self-regulation and behavioral engagement
can unfold concurrently and in short cycles.

Depending on its formulation, when engineers perceive feedback as positive, it triggers a positive
affective response, i.e., positive reinforcement; however, if it is deemed negative, then it activates
a complex and often internal process of emotional self-regulation.

Positive Reinforcement. For authors, when framed positively and/or constructively, feedback
seems to reduce self-regulation effort and may increase willingness to engage and accelerate the
adoption process. For example, P10 appreciated that a reviewer started the review with a summary
of the “good” aspects of his code: “.. I see that at least it’s telling me like good things, the good things
about the code at the start, and then it’s telling me all the things that could be improved. I really
like that” (Phase I, P10). Similarly, P17 echoed this sentiment regarding the positive feedback he
received from P5: “makes me feel good. That always feels good” (Phase I, P17).

For some engineers in our sample, positive reinforcement served as an interpersonal strategy to
increase peers’ receptivity to their feedback. P19 explains his approach as a reviewer: “.. whenever I
write a comment, and I try to not frame it negatively, like, instead of saying, don’t do this, I would
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rather write something like I would write this and this instead, because whatever reason I have, ...
whenever you approach someone with something negative, they will usually try to defend themselves
instead of listening to what you’re actually saying. So it’s always a good thing to basically, come up
with something that sounds more positive, that actually invites the other person to have a discussion ...
making them more open to actually changing something” (Phase I, P19). Positive framing of feedback
is not only a strategy to influence code changes and peers’ coding practices, it is also a social
validation [12] mechanism and motivational tool. For example, when P5 was asked to explain his
positive framing of comments, he replied: I think positive feedback is important. I think both positive
and negative feedback and finding a balance between the two. I think they’re both important to keep
people motivated and morale up and just you know, so people can take pride in their work and know
that they did a good job” (Phase 1, P5). P12 puts it succinctly: .. if you can say, I thought it was very
good that you wrote very short functions here, for example, then that person is more likely to keep
writing short functions rather than sort of letting them ramble on .. [it] should help guide people to
good behaviors, as well as steering them away from bad behaviors with sort of constructive criticisms”
(Phase I, P12).

In Phase I and II, engineers often described LLM reviews as consistently polite, and predictable.
This consistency functioned as a form of positive reinforcement with low emotional cost, making
comments easier to process and act on. These excerpts illustrate how this consistent tone shaped
P4’s and P11’s engagement: T like that it [the LLM] gives some positives. So it kind of reinforces my
ideas in some way, like it, the structure is very good that it has like titles and then just points under
each title, and makes it super easy to follow. Like I can quickly gain an overview, and I feel like I can
quickly put this into practice ... I think it’s quality feedback, honestly” (Phase II, P4). “It was a nice
thing to read [LLM’s feedback], to say that, okay, I was correct. I did something correct. That’s good,
even though it’s like feedback or changing stuff wasn’t so harsh, like, I don’t think it ever will be harsh
with ChatGPT and, yeah, it just made it easier to kind of accept what it was telling me” (Phase I, P11).

Self-regulation strategies. Emotional self-regulation is activated when feedback is difficult to
receive or perceived negatively, e.g., “harsh” (Phase I, P7 & P10), “brutal” (Phase I, P6), and “horrible”
(Phase I, P2). At this stage of engagement, engineers regulate their affect and felt quality of
experience, which moderates their behavioral engagement during the resolution.

Our data show a repertoire of strategies used by the engineers in our sample to self-regulate
their emotions, spanning from reframing the feedback, dialogic regulation, avoidance, and
defensiveness. These strategies seem to help engineers in our sample to manage the emotional
affect and prepare to engage for resolution, enabling the shift from feeling to doing (i.e., RQ3).
This does imply that feeling categorically stops during the doing. Emotions remain active and are
continually reappraised when engineers negotiate meaning and implement changes; regulation
may become concurrent with action. The self-regulation depicted in RQ2’s model is temporal
and in response to reading and the subsequent perception of the feedback. Similar short and
cyclic self-regulation episodes can recur as engineers advance the resolution and invest further in
outcomes.

Reframing. The strategy is based on reinterpreting the intent of the feedback to reduce potential
negative affect. As part of this reframing, our data show that engineers use task-anchoring and
decouple themselves from the features of the comment (tone, style, phrasing, reviewer identity).
They seem to dissociate the work that needs to be done from how the message was delivered,
anchoring their attention in the errors and fixes instead.

When P10 and P12 were asked how they reacted to negative feedback they received from other
participants, they described their reframing strategy: first, intent reinterpretation (the comments
are to help rather than an attack); second, task-anchoring (centering attention on errors and

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Engagement in Code Review: Emotional, Behavioral, and Cognitive Dimensions in Peer vs. LLM Interactions 111:21

improvements). In their words: ‘T don’t take it personally or try not to take it personally ... It’s just
true [the errors are true] ... You always want to improve your work, don’t you?” (Phase I, P10); “.. so I
am aware of some of my triggers in that regard. I tried to spot when it happens and think, no, hang
on. This isn’t about me. This is just about a mistake that I made or a piece of knowledge that I didn’t
have. It’s not an attack. For me, it’s self-awareness of those triggers ... it’s important to make sure that
the code is correct before it gets released” (Phase I, P12). P11 explained why he reframes: “it is very
like when it starts to feel like a jab at you ... even if the person is coming at me with negative intent, |
just try to make myself believe that they come positively. Otherwise I will get very hurt ... so I have to
frame it in such a way, but it’s easy for me to, you know, accept” (Phase I, P11).

Dialogic. In this strategy, engineers use direct dialogue to reduce the tension caused by the
negative feedback. They initiate a non-confrontational conversation (preferably 1:1, synchronous)
to surface intent, clarify expectations, and re-establish common ground. Their belief is that human
meaning is negotiated and not inferred from written comments. Thus, meaning is sought through
direct exchange. P1 described this strategy as “you stay in the context”; by bringing the conversation
back to the shared situation, i.e., errors in the code, and not the tone and phrasing of the feedback.
This strategy also uses task-anchoring. During this dialogue, when live artifacts are used (e.g.,
opened files, looking directly at the code), it may shift the focus on the situation and “context”,
lowering tension, and speeding the agreement on what to change. Notably, this strategy combines
emotional self-regulation and resolution, while other strategies appear to be phased, i.e, self-
regulation strategy — readiness to engage.

P1 explained the rationale and this approach succinctly: “.. it’s about a discussion, I need to know
his idea what is, what the problem could be. I need his comments, and then we can overall, get a
common ground, for example, okay, it makes no sense. I could interpret anything into it, and it could
be wrong. That’s why I'm definitely a guy which likes to discuss, to make it direct overall, because
writing something in comments, I don’t like it too much. It’s more if you have a discussion, because it’s
faster. You stay in the context ... so there will be no misunderstanding, because in the meeting, you can
look at faces and so on” (Phase 1, P1). In Phase II followup, he emphasized that prior to the decision
to engage in a dialogue, he takes an internal decision: “you have to decide yourself if you want to,
overall, have a conversation or just do it or ignore it. So you have to do some assessment yourself, and
the decision” (Phase II, P1).

In Phase [, P6 described the feedback he received from P11 as “brutal”. Yet, he prefers to move
from emotion-to-action using dialogue, seeking intent first (“what do you mean?”) before solution
(“what should change?”): “T would say, for example, I would probably just ask them, what do you
mean by that review. I would probably ask, do you mean that? So I would actually try to engage with
them in a certain way, so that I try to understand exactly where they come from with their process as
well. That’s how we definitely have that discussion with them to understand exactly, okay, you went
brutal. But at the same time, I'm gonna try to understand exactly what was the thought process in
terms of how they approached it” (Phase 1, P6). His process rationalizes a “brutal” feedback into
concrete tasks, by asking clarifying questions that shift the emphasis from the tone of the feedback
to actionable changes.

Similarly, P7 perceived P11’s review as “harsh”. Yet, he is willing to engage in dialogue; when
asked how he would deal with such a colleague, his strategy was dialogic: “.. I'd still want to have a
discussion with this reviewer. I would have my guard up a little bit more, because the way the tone
comes across is a little bit more aggressive, so I kind of be a little bit wary, and I'd probably be careful
with what I said too. I wouldn’t want to further instigate things. Even if I disagreed, I would kind of
definitely be careful choosing my words with this reviewer. Just to see, like, what the thought process
was behind these comments, try to understand where this person is coming from” (Phase I, P7).
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Table 8. Self-regulation strategies: definitions, limitations, and impact on resolution. This analytic synthesis
is intended as propositions and not as an exhaustively coded pattern or set of themes.

Self-regulation strategy

Definition

Potential limitations & impact on resolution

Reframing feedback

Dialogic regulation

Avoidance

Defensive

Reinterprets the intent of the
feedback (from negative to what
needs doing), decouples tone,
phrasing, and the reviewer’s identity
from the content, and anchors
attention on the task (i.e., errors and
fixes) to down-regulate defensive
affect.

Seeks meaning in the feedback
through 1:1 synchronous
conversation to surface intent,
clarify expectations, and re-establish
common ground.
Proactively limits exposure to
emotionally high-cost reviewers.
Participants reported deliberately not
inviting “toxic” reviewers to review
their code.

Manages emotions through control
and advocacy rather than perspective-
taking.

May accelerate acceptance, reduce rumination,
and speed the transition from feeling to doing.
However, ambiguous or disputed items may
remain unresolved or still require follow-up
dialogue, a secondary strategy (i.e., dialogic).

Assumes a psychologically safe dialogue and
carries the risk of encountering behavior similar
to that observed in the written feedback,
including potential escalation or conflict. The risk
of delaying resolution is high.

May provide short-term relief; however, it
assumes consistent effectiveness (i.e., that the
engineer can reliably avoid the reviewers in
question). Contingency strategies (e.g., dialogic
or reframing) are needed when avoidance is not
possible. It may lead to rapid resolution when
successful.

May accelerate resolution when the dialogue
is psychologically safe; however, it carries a
high risk of escalation if the tone is harsh. It

may also be perceived as combative, increasing
interpersonal strain and reviewer “pushback.”

Defensive. At times, feedback perceived as negative triggers defensive responses to reduce
affect through self-protection and justification. For example: “it depends on the type of feedback. If I
think it has merit, then sure I'll be willing to take it into consideration and make the change if I think
it’s appropriate. But if I have a disagreement with the feedback, I'll definitely stand up for it to make a
case for why I think that way is better than the suggestions. Sometimes I can take it personally, like, if
someone comes in with a suggestion that I don’t agree with, it can be like personal” (Phase I, P5).

P5’s account shows a defensive self-regulation, where he manages emotional discomfort not
by disengaging but by advocating for his decision and reaffirming personal competence. This
strategy maintains engagement but may constrain openness to learning, functioning primarily
as self-protection rather than a constructive one. While a dialogic strategy seeks meaning and
clarification, a defensive one, as it appears in our analysis, moves directly to justification and
advocacy, assuming the author’s original solution is correct and the reviews’ comments are a
challenge to defend against rather than an opportunity to seek shared understanding. However, we
do not claim that they could be mutually inclusive or employed consequentially, e.g., defensive —
dialogic, as our data does not allow us to make such conclusion empirically.

Avoidance. This strategy is anticipatory, in contrast to the other self-regulation strategies, which
are post-feedback. Engineers seem to proactively limit exposure to high-cost emotional sources (e.g.,
“picky”, “harsh” reviewers) to protect affect. It is a premeditated (who to invite to a code review)
rather than a post-feedback strategy like reframing. In the words of P6: “so in my environment, I try,
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by all means, to try to avoid adding that person to my reviews” (Phase I, P6). P8 described some of
his colleagues “picky”. When asked how he deals with them, he explained: “in fact, there are only
two of them and we know which one there are. They are always pushing, extremely picky. So we go for
the ones that are not as picky” (Phase I, P8).

The instrumental role of code review is to identify issues and actionable improvements and
to converge on a resolution. The self-regulation strategies engineers use have distinct effects on
resolution (and pace) and entail predictable limitations. Table 8 synthesizes these impacts and
constraints.

These strategies describe how engineers in our sample self-regulate their emotions in response
to negative feedback. Our data also show that these strategies are value-laden or driven by the
motivation to achieve code quality.In our analysis, we identified three main values: accountability
to the team; a mindset oriented toward growth and learning; and a commitment to peer harmony
(maintaining respectful, low-friction collaboration). These values inform and scaffold the strategies
used (e.g., reframing, dialogue, avoidance) by the engineers.

Motivation to achieve code quality. For many engineers in our sample, the motivation to
achieve high-quality code functions as a driver to self-regulate in response to feedback. For some,
quality is intrinsically driven, e.g., ‘T care”, “so I try to be a person that cares because, well, it helps
me from making mistakes. It is personal ... It’s important to me that it [code quality] is done well”
(Phase I, P12). For P12, achieving code quality is entwined with her identity, e.g., “personal”; so
criticism is reframed as guidance toward a valued end (improved quality), rather than a threat. P13
motivation is also intrinsic but anchored in his personal integrity, e.g., “doing the right thing”, and a
desire for recognition for his standards. He explained: “just sort of that you’re doing the right thing
... which makes me feel right ... having high-quality code that makes you feel like, Oh, I'm getting the
high-quality code out there” (Phase I, P13).

Others frame their motivation for quality in instrumental terms, “my main goal is to have a
working program without bugs and with best practices” (Phase I, P14). Collectively, these accounts
show a value-goal system, which motivates self-regulating negative affect.

The same motivation appears source-agnostic and applies to LLM sources. Some engineers accept
LLM input because it advances their pursuit of quality: “so as long the review is helping me to improve,
I'm willing to consider a model like ChatGPT” (Phase I, P8). This may imply that engineers evaluate
LLM feedback through quality-achieving goals (i.e., does it identify errors? Propose best practices?),
not a source lens, i.e., peers vs. LLM. Especially when the engineers perceive the emotional cost as
lower when dealing with LLMs. P7 explained: “definitely this [ChatGPT’s review]; I would choose
this one just because it’s organized, formatted, much better, and the tone is definitely more opening,
more neutral, I guess ... I don’t have to worry about if I would have a discussion with this person; I
wouldn’t worry as much about upsetting the other person ... I might be more picky with my words, just
to make sure that it didn’t get escalated into any kind of argument” (Phase I, P7).

In short, motivation to achieve code quality operates as a driver of self-regulation in peer-led
reviews. In LLM-assisted reviews, the same motivation calibrates engineers’ openness towards the
LLM and justifies adoption of suggestions.

Accountability. In peer-led review, accountability for code quality emerges at both the collective
level (team) and the individual level. At the collective level, it seems a shared norm, a socially
distributed sense of responsibility that binds engineers to one another and to the collective pursuit
of code quality. When P6 was asked why they were invested in reviewing other participants’ code,
they explained: “so I think all of us are responsible. It’s not only just the task ... So it is a collective
thing that we all should be responsible for ... We also need to be accountable of what we do. So I like to
be held accountable. Tell me when I'm wrong, tell me when I'm doing something correct” (Phase I, P6).
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This shared accountability is both self-imposed, “because I'm accountable for my code and well, it’s
not only that, it’s my work to do it” (Phase I, P8).

In several accounts, this sense of responsibility appeared to orient self-regulatory responses
(e.g., staying constructive, acting on issues) even when feedback delivery was imperfect. In this
way, accountability functioned like a social contract in peer-led reviews. Engineers expected to be
corrected and to correct, and framed action on feedback as “part of the job”.

In the context of the LLM, accountability is individual and self-driven rather than collective.
Engineers emphasize personal responsibility for verifying, contextualizing, and deciding whether
to adopt LLM feedback. P9 explained: ‘T think I'm accountable dealing with the LLM. I always cross
verify before just going and jumping ahead with what ChatGPT said” (Phase I, P9). Similar attitude
shown by P4: “so when I would be working with ChatGPT, then I would kind of also take on the
responsibility that I basically have no one to blame but myself when things go wrong. But yeah, in
general that is not the case in a team, we all accountable ... So yeah, again, if I decided to use ChatGPT
for a task, then I am responsible for making sure that the output makes sense, and I just not plainly
trust it” (Phase 1, P4). In this sense, accountability in LLM-assisted review reflects a shift from social
obligation to moral responsibility; engineers remain accountable not to peers, but to their own
professional standards.

Mindset. Across our sample, some engineers have shown a growth-oriented mindset in dealing
with feedback. They approached feedback, regardless of whether it is negative, as an opportunity
for learning, growth, and improvement rather than as a threat to their competence. When P20 was
asked how they approach negative comment, they explained: “personally, I don’t feel anything bad
because I don’t have that feeling that I'm always right, and I'm honestly open to new things, learning
new things ... I think staying neutral is the key. Just basically do the job” (Phase I, P20). For these
engineers, feedback is a learning tool, not only for correctness but integrated prospectively, e.g.,
“because some of the things he said the next time in my next code, I will actually implement that, right?
So, yeah, that’s the thing, just to grow, improve yourself” (Phase L. P3).

This mindset motivates engineers to stay open to criticism, approach the feedback as an
opportunity to learn and translate it into concrete improvements, even when the tone or content
are emotionally challenging.

In the case of the LLM-assisted review, this quality persists. Some engineers also approached the
LLM review as a learning opportunity, e.g., I definitely appreciate [LLM’s review] being educational ...
For example, it explained, how I handled this vulnerability well on the good aspects, and then explains
what it was and how it will help prevent an attack. It is good. It reinforces good habits” (Phase I, P10).

Table 9 synthesizes the distribution of identified self-regulation strategies across our sample. It
reveals that engineers use multiple strategies, which may suggest a contingency approach, when
the primary strategy is less efficient in a given context. Engineers may also combine strategies, e.g.,
reframing + dialogic. Reframing and dialogic regulation emerge as the dominant and complementary
strategies. They reflect two modes of self-regulation, intrapersonal (cognitive reappraisal and task-
anchoring) and interpersonal (meaning negotiation, clarification, and task-anchoring). In contrast,
avoidance appears as a selective, anticipatory mechanism aimed at minimizing emotional cost,
while defensiveness surfaces rarely and primarily when feedback threatens personal competence.
Both strategies combine dialogic either as a mitigation strategy, when avoidance is not possible,
or combined with defensiveness. Across the table (Tbl. 9), these regulatory choices are motivated
and scaffolded by a commitment to code quality, accountability, and a growth-mindset. Dialogic
self-regulation is common where accountability is salient (e.g., P1, P6-P9, P12, P14-P16, P19).
It seems that when code quality is a shared responsibility, engineers are willing to absorb the
interpersonal cost of clarifying conversations to reach a resolution. The table also shows that growth-
mindset orients from defensiveness and toward reframing and/or dialogic. In 13 of dialogic cases
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Table 9. Mapping of participants’ self-regulation strategies and motivational supports. N in each column
represent the number or occurrences of a particular strategy or motivational support in our data.

Self-regulation Strategies Motivational Support

Reframing | Dialogic | Avoidance | Defensive | Code Quality | Accountability | Mindset
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accountability is co-present, and in all of growth-mindset cases engineers adopt either reframing,
dialogic or combined.

So, how does this intrapersonal process change when engineers process LLM-generated feedback?
When the social-interpersonal layer drops out, engineers still draw on the same values, motivation
for code quality, accountability, and growth mindset. But accountability becomes self-referential
and not collective (team-level). In this setting, emotional self-regulation may become lighter and
faster: reframing is rarely needed, avoidance becomes absolute as a strategy, and the main constraint
to adoption is mostly cognitive (missing context, content style, and scope) and less emotional (see
Sect. 5.3). As Al-supported collaboration grows, sustaining quality and ethical standards in software
engineering will depend partly on engineers’ ability to adapt these self-regulatory and value-based
system to their work with machines. For example, while the values are transferable to an LLM-only
setting, the self-regulation process must evolve, from managing social tension and affect toward
calibrating trust, verifying reliability, and maintaining agency in decision-making.

RQ2 - Summary (Emotional Engagement)

Trigger. Peer feedback often functions as an affective trigger (positive or negative), prompting
regulation, when perceived negative, before or during action. The trigger can be past exposure
to reviewers (avoidance strategy) or the feedback received for a particular review (reframing,
dialogic, defensive).

Positive reinforcement. When feedback is framed constructively or highlights positive
aspects of the code, it evokes positive affect. Engineers interpret such feedback as acknowledgmen
of their competence, potentially sustaining their motivation to maintain similar performance
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and coding practices.

Emotional self-regulation. To manage negative feedback, engineers draw on four recurring
self-regulation strategies: reframing (intent reinterpretation + task-anchoring), dialogic regulation
(meaning negotiation + task-anchoring), avoidance (anticipatory strategy), and sometimes
defensiveness (self-protection and advocacy for one’s perspective in coding).

Motivation and personal values as scaffolds. Use of the above mentioned strategies is
shaped by a motivation for code quality and a value base: accountability (team and individual),
and growth mindset.

Function. Self-regulation establishes readiness to engage in the resolution process and channels
movement from feeling toward doing.

Patterns. Reframing and dialogic self-regulation are most common, in our sample, and often
complementary; avoidance is selective; defensiveness is rarer and less constructive.

Bridge to resolution. Readiness transitions into behavioral pathways (sense-making, resolution,
implementation). However, the relation and transition are not always linear; they can be
intertwined (self-regulation < behavioral engagement + resolution).

LLM contrast. In LLM contexts, emotional cost is significantly lower; values still guide
engineers’ actions, but accountability skews individual’s decision-making for adoption pathways,
explored in RQ3 and RQ4.

5.2 RQ3 - Behavioral Engagement & Resolution

RQ3’s findings trace how engineers move from feeling to doing, in response to the feedback.
Engineers’ emotional self-regulation seems to moderate their engagement readiness and may
influence their behavioral pathway that follows: sense-making of comments, resolution, and then
translation of decisions into concrete changes in the code. While emotional self-regulation often
functions as preparatory phase to the process of resolution, it is largely intrapersonal to establish
readiness. However, as demonstrated by Table 9 summary, the relationship between emotional
self-regulation and behavioral engagement is not always intrapersonal and linear, especially when
dialogic strategy is used, either alone (e.g., P1 and P18), as contingency, or in combination with
other strategies (e.g., P6, P8, and P12); the self-regulation and engagement become intertwined.
In such cases, emotional self-regulation may unfold simultaneously with interaction. Engineers
appear to self-regulate their affect through the dialogue itself, using conversation to clarify intent,
restore mutual understanding, and convert tension into collaborative action.

When engineers choose to respond, whether part of the dialogue or otherwise, they seem to
calibrate their behaviors according to the social context of their teams. They align their behavior to
the relational climate with the reviewer or the team norms, how other peers would engage in such
a situation, or what is acceptable by the team. This social calibration informs resolution behaviors
(e.g., negotiation, consensus-seeking, decision-making). Then, the implementation of changes. In
sum, RQ3’s findings map the doing: from social calibration (when responding to feedback) —
resolution — implementation. However, in the case of LLM-assisted review, the decision process is
largely unilateral, internal, and influenced partly by the content style (see RQ4, Sect. 5.3).
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Fig. 6. RQ3 - Behavioral Engagement and Resolution. Emotional Self-regulation is the model described in
Sect. 5.1 (RQ2).

Legend: Ovals distinguish between feedback from peers vs. LLM. Rounded rectangles denote constructs
with components (e.g., Evaluation Filtering, Rationalization, Action Enactment); dashed rectangles denote
components. Solid arrows indicate activation flow. The blue rounded rectangle denotes the internal sense-
making process of the feedback used by software engineers part of the decision-making to adopt the comments.

Social calibration. In this process, engineers adjust their response tone, style, phrasing, etc.
to take social factors into account or to allow alignment and comparison with other peers. This
calibration appears to be influenced by the relational climate with the reviewer, team norms,
and/or social comparison.

Relational climate. The perceived quality of interpersonal relations moderates how engineers
choose to engage in resolution. For example, when P16 was asked why he would choose to remain
constructive with the reviewer, he explained: ‘T feel like you create like this toxic workplace vibe
... sometimes you create relationships with people like friends, not just co-workers. And then if you
start being too tough on them, you kind of lose that” (Phase I, P16). To engineers in our sample,
relational climate is a proximal cue that shapes how they interpret and engage to reach resolution.
P15 explained: ‘I prefer a friendly approach ... if the review comes from someone I know in real life, of
course, this kind of interaction also helps to digest the feedback and improve your personal relationship,
whether you are receiving a good or bad review to improve your code. I know that person cares about
me and what I'm doing” (Phase 1, P15).

These accounts explain a drive for peer harmony as a mechanism to maintain relational climate.
As P6 explained, I think it’s very important to build a good working relationship with people... Even
though we might be laughing together when we’re having lunch... we also need to be very constructive
in terms of our work” (Phase I, P6). Likewise, P10 emphasized sustaining harmony: “.. also want to
Jjust keep a good relationship with peers ... even if they really don’t like me, I'll still be respectful to
them” (Phase I, P10).

Team norms. Our data support two complementary team-norm mechanisms: (1) psychological
safety, engineers can ask, push back, and be heard without interpersonal penalties, and (2)
reciprocity of effort, reviewers’ labor justifies constructive behavior and similar investment
in effort.
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Psychological safety. Our data show that engineers feel psychologically safe when they perceive
having a voice without penalty. They can question, push back, and voice concerns without censure.
P1 explained his approach to reduce avoidance dynamics (withholding PRs, delay, not asking for
help) and keep review interactions safe to enable improvement: ‘I don’t go the hard, harsh way. You
have to be friendly ... they are more likely to make PR pull requests. If you get always harsh comments,
you will not ask for help. That’s why I also like to make it more friendly, more discussion. Hey, why
did you do that? Let’s discuss it” (Phase I, P1). In his team, P11 explained that it is safe to push back:
“push back is not discouraged” (Phase I, P11). P7 explained that in his team, it is acceptable to make
“mistakes”, “let’s say somebody made a mistake and I had to review it, or I made a mistake, somebody
was telling me the feeling that okay, it’s okay to make that mistake, and it’s okay to fail, and we’ll
help you through it. We’re all working together, try to make our application work and do what the
business needs, just that feeling of working together, that cooperation, I think that’s very key to like
being a working team of developers” (Phase II, P7).

Reciprocity of effort. The engineers in our sample also discussed a reciprocity norm: if their
peers invest time to review, then they feel that they owe them constructive engagement. Engineers
perceived invested effort in reviewing their code as an invitation to constructive response. P4
explained: “.. people that write these criticisms also invest their time and effort into these reviews, and
in the end, they help me. So I think it’s only fair to kind of react to that with an open mind” (Phase I,
P4).

Social comparison. Our data also show that engineers calibrate their engagement through
social comparison, evaluating their own performance against peers’ contributions. For example,
P2 described a comparison with P19: “.. when I looked at that, I felt a bit ashamed of what I did for
P19. So by, you know, the code that they review, that P19 did for me is a lot better than what I did
for them. I was very impressed by what they put onto it” (Phase I, P2). Then later in the interview
he drew parallel with his current team: ‘Tt inspires me. Like, it really inspires me like, you know, I
see that sometimes with some of the colleagues. They go above and beyond ... I should be more like
that ... someone cares, you know they’re making an effort. They want to see you do well, and because
they want to see you do well, you’re inspired to do well” (Phase I, P2). P2’s account shows adaptive
striving rather than defensiveness. His peers set an internal benchmark for him for quality and
professionalism.

Resolution & Implementation. In our model (Fig. 6), emotional self-regulation and social
calibration function as preparatory but continuous processes. They guide when and how engineers
move toward the resolution stage. Emotional self-regulation seems to prepare the individual to
engage by stabilizing affect, while social calibration may orient the response within the relational
and normative landscape of the engineers’ teams.

Our data indicate that engineers will eventually transition to resolution, regardless of the
outcomes of their intrapersonal self-regulation and interpersonal engagement, if any, such as
dialogic interactions or responses to comments. Some engineers, in our sample, show an inclination
to process the feedback unilaterally using an internal sense-making process followed by a selective
adoption of comments. However, none of the engineers indicated signs of potential withdrawal,
the behavioral disengagement from the review process, by avoiding or ignoring feedback, delaying
responses, or refraining from participation to protect oneself from emotional or interpersonal
strain [23, 41].

This observation in our sample may reflect the controlled nature of our study. Participation was
structured and time-bounded, reducing opportunities for avoidance. Additionally, participants may
have experienced limited psychological threat in the review context, since the feedback was not
tied to real workplace experience (discussed further in Sect. 7).
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Resolution is not merely about accepting or rejecting feedback; it is a process of sense-making,
and decision-making. Some engineers seek clarification or consensus (e.g., through dialogic exchanges),
while others act independently once understanding is reached. The underlying aim is convergence,
aligning perspectives on what needs to change and why. Then, implementation follows, i.e., edits
to the code. This process closes the feedback loop that began with emotional self-regulation.

Sense-making. The sense-making process is either unilateral (e.g., framing strategy alone) or
dialogic, when the engineer chooses a direct interaction. It comprises two intertwined and parallel
processes, evaluation filtering and rationalization, before acting on the comments, i.e., action
enactment. P8 explained this process: “most of the time, if a comment is about an error or an edge
case that doesn’t work, I just fix it — 100%, no question. But for the rest of the suggestions, I first read
and check if they make sense to me. If they do, I try to explain my reasoning, why I did it that way,
and see if the other person agrees. Because most of the time, they write the comment without knowing
my thought process. So I explain, I did this because of that, and if they have another view, I can change
it, no problem. But if I think the comment isn’t valid or doesn’t apply, I do the same thing — just with
more arguments to explain why I wouldn’t change it” (Phase I, P8).

His process start with evaluation filtering, ‘I check if they make sense to me”, and rationalization,
“Ttry to explain my reasoning”, followed by action enactment, ‘I fix it”, or “T wouldn’t change it”.
However, rationalization is not always dialogic. Some engineers engage in this process internally,
weighing the rationale of the comment against their own internal understanding of the context of
the code and coding practices. As P14 explained: ‘T would check the comments and the reviews and
try to improve the code given the review ... For the ones I think they are correct, yes, for the other ones,
I'would have to think about it if they make sense in this case or not ... Or the context of the code I'd like
to see if they apply or not? For example, I see here a comment because there are some methods, some
getters, that are not used. I think I would keep them because they could be used elsewhere” (Phase I,
P14).

Learning. Code review is not only to correct errors and improve the code. Engineers in our
sample leverage the process to learn. In the words of P11 and P8: “early in my career, I had a very
good mentor who kind of taught me a lot, especially through code reviews. That’s how I learned a lot
of how to improve myself. And I always feel like I need to give back, you know, to also help others
improve their code” (Phase I, P11); “.. new ideas ... I have learned a lot (Phase I, P8).

Codification. Our data show that in some instances resolutions may require a team consensus.
Engineers may opt to transform their code review resolutions into shared practices. Codification
represents the social consolidation of learning; negotiated solutions, stylistic preferences, or best
practices evolve into agreed-upon standards at the team-level. Behaviorally, it reflects a shift from
individual cognition (“how I fix it”) to collective alignment (“*how we do it”).

In our data, this process is deliberative. Engineers describe codification as an outcome of
discussion, argumentation, and consensus-making. P1 illustrated this collective reasoning: “it’s not
like, hey, you have to follow my path ... and if we can’t find common ground, let’s vote for it ... because
the team has to, overall, maintain the code, for example, not only a single person” (Phase I, P1). Once
a resolution gains sufficient acceptance, it becomes embedded as a team practice or guideline, as
P1 later explained, “so the team has to decide which way we have to go. ... if we can generalize it,
make it more generic, then we can edit it as a guideline that we have to do a certain way” (Phase I,
P1). Similarly, P9 highlighted the integrative function of this process: “it’s how the work becomes
seamless if the team’s all in one page ... It’s good to have a discussion and come on to the same page”
(Phase I, P9).
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To deepen our understanding of the patterns identified in the analysis, we synthesized each
participant’s trajectory from self-regulation to resolution and outcome in Table 10. For self-
regulation strategies and motivational and/or values supports (e.g., code quality, accountability,
or team norms), they were directly coded from participants’ interviews. For pace and resolution
outcome, they were inferred analytically, such as the degree of decisiveness, negotiation, or iteration,
as described in the interviews. This mapping allows us to trace how emotional, social dynamics
and subsequent behavioral engagement shape the resolution process and its eventual closure. For
example pace was inferred as “Moderate” in the case of P1 because he prefers to negotiate and
escalate if needed. For P20, it is “Fast” because they indicated preference for reframing only.

Table 10 shows an alignment between the locus of engagement and the pace of resolution. When
engineers resolve feedback through solo and internal sense-making (6 out of 20 cases), the process
could be fast. In contrast, dyadic negotiation may lead to a moderate pace, with resolution bounded
by the consensus of the pair. The slowest trajectories appear when feedback escalates to the team
level (e.g., P1, P6, P7), yet this practice is necessary when shared standards and collective ownership
are the norms. Notably, partial adoption is the standard, reflecting the selective nature of processing
the feedback and its dependency on negotiation and engineers’ internal sense-making.

However, fast may not necessarily imply thorough, and may cause a higher risk of idiosyncratic
implementation and weaker alignment with peers’ expectations. In addition, dialogue does not
guarantee consensus. Dyads may stall, cause friction, and require escalation to team-level governance.
In sum, the trajectory to resolution is fluid and contingent on situational contexts and social settings
rather than a universal formula.

So, how do these trajectories to closure change when engineers interact with an LLM? Our
data show that engineers may default to internal sense-making, with faster resolution, implying
potential higher risk of idiosyncratic implementation and a weakening of team norms, including
collective standards (see Sect. 5.3).

RQ3 - Summary (Behavioral Engagement & Resolution)

From feeling to doing. Emotional self-regulation establishes readiness and often precedes
action; when dialogue is chosen, regulation and engagement intertwine (engineers regulate
through the interaction).

Social calibration. Before acting, engineers attune to: (a) relational climate (maintain peer
harmony, avoid toxicity), (b) team norms (psychological safety; reciprocity of effort), and (c)
social comparison (adaptive striving toward peer standards), not necessarily used alone, but
combining multiple.

Resolution. Resolution involves a sense-making process (either individual/internal or during
the dialogue). It comprises evaluation filtering and rationalization of the comments (solo or
dialogic), followed by action enactment (edits of the code, replies to the comments, or both).

Resolution paths. Typical paths include internal sense-making (solo closure), negotiate (dyadic
meaning-making), and escalate (team consensus when standards and trade-offs are at stake).
However, sometimes these are combined, e.g., P9 and P12 in Tbl. 10.

Locus alignment with resolution pace. Solo/internal paths maybe be fast but idiosyncratic;
dyadic negotiation could be moderate; team escalation may delay resolution, i.e., slow, yet
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supports shared standards.

Outcomes. Partial adoption is common, reflecting item-by-item uptake and negotiated closure
rather than collective acceptance of comments. It may also imply that code quality and coding
decisions are negotiable rather than rigid standards.

Learning & codification. Individual fixes can consolidate into individual learning and/or
team guidelines when comments and improvements warrant a team-level discussion and
agreement.

LLM contrast. In LLM-assisted review, decisions skew solo/internal; emotional ease and social
cost can shorten time to action, but risks drift from team norms unless practices are re-aligned
(see Sect. 5.3).

5.3 RQ4 - LLM’s Content Characteristics

Table 11. Aligned LLM feedback: content features and cognitive effects.

Feedback feature  Cognitive effect  Illustrative evidence (Phase II)

“Yeah, this one is a lot better than the than the previous one. It’s a lot more
concise and really easy to read in the way that it’s like sectioned is really

Struct “Easy t d”
ructure asytorea nice ... by doing that, you kind of reduce, like, the cognitive load on the
human.” (Phase II, P2).
Why-based ! “.. in a code review, you kind of just want to know, where’s it going wrong?

“Easy to read” ,
justification M What am I missing? Am I missing tests? If it’s been inefficient, why, and

how can I make it more efficient?” (Phase II, P2).

‘I'm kind of thinking about if what I'm reading makes sense. This one is
better because I think it contains like the key points, but it’s more compact. I

Actionabilit; “Easy to read”
cronabiity asy torea find it easier to read ... I definitely intend to keep using it. I think it is useful.”
(Phase II, P4).
Tone “Trust” ‘T like the tone for sure, very neutral. It’s not very positive and supportive.

So it’s very professional ... because it’s very straight to the point, so I think
that trust would be built up more.” (Phase II, P7).

‘I think it’s done a pretty good job. So it found all of the critical errors that

s ., could fail if it was in production. And, yeah, it also gave the small, small

scope Right to the point fixes as well. So yeah, I would say, I like it ... Right to the point. I would love
it if somebody gave me this review.” (Phase II, P20).

Fit-for-purpose

Recall RQ4 sought to investigate how the content characteristics of LLM-generated feedback
(e.g., scope, format, and tone) shape software engineers’ engagement and willingness to adopt.
Our Phase II prompt (see Sect. 4) has improved the alignment with the engineers’ preferences in
our sample; e.g., “honestly like to get feedback like this from one of my coworkers. I would be pretty
shocked” (Phase II, P7); and “This is very impressive and interesting” (Phase II, P6). Thus, the question
becomes not how engineers regulate emotion and their subsequent behaviors pursuing resolution,
but how they act on feedback. The emotional cost and the need for self-regulation are significantly
reduced in LLM-assisted review; e.g., .. human beings can be very taxing emotionally ... I think Al
kind of has a better element for me because of the fact that the emotion part is actually removed. I
only get the response part, where you actually just need to know exactly how you can resolve the issue
... with AL I get unbiased, unfiltered criticism” (Phase I, P6).
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Our analysis identified two outcomes: improved engagement and likelihood of adoption when
the feedback is aligned with the engineers’ preferences, and potential disengagement when the
feedback is unaligned.

Aligned feedback. Aligned feedback is when LLM-generated feedback matches engineers’
cognitive expectations and is scoped accordingly. When feedback aligns with format, actionability,
tone, and fit-for-purpose preferences, engineers in our sample showed higher engagement and
improved willingness to adopt. Table 11 illustrates the alignment and its impact on engagement.
Aligned feedback was associated with lower processing effort and engineers often reported moving
more quickly to implementation.

Across cases, engineers linked cognitive ease (clear structure, concise scope, neutral tone) to
lower effort in sense-making and higher stated likelihood of adopting the suggestions; nonetheless,
likelihood of adoption remained conditional on perceived correctness and context fit rather than
ease alone. P19 explained how she would process the LLM’s feedback: “T would look at it one by one
and see whether I think that is useful or not, all the useful ones, I would implement them right away and
everything else where I still have questions or I could provide more context. I would do that later” (Phase
IT, P19). This account mirrors the internal sense-making pathway described in RQ3: engineers
filter, rationalize, and then enact actions when cognitive effort is low and task-feedback alignment
is high. In other words, LLM-generated feedback that minimizes cognitive friction seems to reduce
the move from comprehension to implementation, at the same time reducing the perceived need
for additional dialogue or emotional self-regulation.

Unaligned feedback. Based on Phase I data, unaligned feedback is characterized by verbosity,
generic tone, and lack of contextual precision. It introduces high cognitive demand rather than
fluency. Table 12 documents the elements of LLM feedback that caused disengagement. It seems
that unaligned feedback disrupts cognitive flow. The misalignment with engineers’ preferences
leads to cognitive rejection. For example, in the case of P13 (Tbl. 12), his reaction seems to reflect
a cognitive rejection triggered by goal, i.e., LLM’s feedback misalignment. The LLM’s feedback
emphasized affirmation over actionable critique, so P13 experienced it as informationally redundant,
leading to cognitive disengagement and reduced motivation to process or act on the comments.

While the Phase II prompt improved engagement and potential likelihood of adoption, a residual
tension remained between trust in the LLM’s accuracy and perceived superiority of human reviewers.
Engineers valued the LLM for its completeness, precision, and emotional neutrality, yet several
participants framed it as a supporting actor rather than a relational partner in review. As P19
reflected, the LLM’s feedback is “valuable” but its “faceless” nature limits the shared understanding
that sustains team-level accountability, ‘T think human feedback is still slightly more important, just
for the fact that I know that I can give LLMs code that is super complex, and they will still understand
while humans often do not ... I need to work with them, and I need my co-workers to understand my
code too, they are still slightly more important for me when it comes to feedback, as compared to an
LLM ... I still think LLMs pretty much always provide some valuable inputs, or at least even if it’s
missing context ... Well, ChatGPT being a faceless chat box is probably a factor” (Phase II, P19). P15
similarly contrasted the LLM’s technical completeness with the human warmth of peer investment:
“so it found all the errors and all the things that I can improve. On the other hand, I can say I found the
other participant review more, let’s say earthworming, because another person spent time to read my
code, understand it, and then do a review. I think I don’t know like ChatGPT spend one second.” (Phase
IL, P15). P7 captured this balance succinctly, describing the LLM not as a replacement but as “part
of the toolbox™, an aid that does not replace humans.

Collectively, these accounts suggest that while LLM feedback appeared to lower perceived
cognitive effort, which engineers linked to a higher reported likelihood of adoption, it cannot
replicate mutual accountability embedded in human peer review. In practice, some engineers
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Table 12. Unaligned LLM feedback: content features, cognitive friction, and disengagement patterns.

LLM feedback feature Cognitive effect Disengagement Illustrative evidence (Phase I)

“But not the verbose thing too is too much. It’s
most likely written for somebody else, because
the other person could be not knowing what’s
“I need to filter o . happening overall ... for me, it’s not useful
Tt’s not useful because I know it. I wrote it overall. I know what
it does, and it’s too much. It’s the information
which is obsolete, in my opinion. So, of course,
there is certain improvements available. This is
very good, but it’s too verbose. It’s giving me too
much information, which I already know. Then
I need to filter this out” (Phase I, P1).

Verbosity / over-explaining . .
this out

“Yeah, what I don’t like overall is that it provides
positive aspects. Makes this makes no sense me. It
Generic or template-like “makes no sense it doesn’t give doesn’t give me value overall. I want the review.
tone to me” me value” I want to fix potential bugs in the issues, yeah,
and not like going for the positive things.” (Phase
L P13).

“I think it’s a little bit bloated, because it does
like the context ... So I did feel like I was reading
about stuff that is wrong, but it’s not exactly
wrong with the given context ... Some useful
feedback there. But it’s a little lost midst the
bloat. It would be a little bit more practical if
it was given by someone that already has the
context” (Phase I, P17).

‘Reading about
Missing context stuff that is “[Less] practical”
wrong”

“It does provide useful feedback. It’s relevant
exactly to the piece of code that I've written.
It points out really well the positives and the
negatives. But there’s just too much of it. As
a senior, I think I just want to know if there’s
anything that needs to be fixed” (Phase I, P12).

Beyond the scope
of what “needs to

be fixed”

“too much of it
Over-scoped suggestions . ,,f
[positives]

envision a hybrid model of engagement, where LLMs augment human review by accelerating
comprehension and surfacing issues, while humans preserve context, and shared responsibility for
quality.

RQ4 - Summary (LLM content & Cognitive engagement)

Core finding. Engineers reported higher engagement and a greater tendency to adopt when
LLM feedback aligns with cognitive expectations (clear structure, concise scope, neutral
tone, actionable guidance). Misalignment (verbosity, generic tone, missing context) increased
processing effort and dampened engagement.

Mechanism (reported in our data). Feedback alignment — cognitive ease — improved
engagement & likelihood of adoption. Alignment seems to reduce sense-making effort; however,
misalignment created friction (high cognitive demand, mistrust).
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Boundaries. Cognitive ease alone was not sufficient; engineers still prioritized perceived
correctness and context fit before implementing.

LLM-assisted vs. Peer-led review. Emotional self-regulation demands seems to be lower;
the locus of engagement skewed toward solo and internal sense-making rather than dialogic
negotiation.

Residual tension. Trust in LLMs and collective accountability remained stronger when
engineers were asked to replace peers with LLMs. Several participants framed LLMs as tools
that assist but do not replace their peers. Most our participants see LLMs as first step to
accelerate improvements and surface issues earlier; then, peers supply context, ensure norm
enforcement, and shared accountability.

Tooling design implications. Our sample favors: (i) structured, sectioned outputs; (ii) concise,
fit-for-purpose scope; (iii) neutral, depersonalized tone; (iv) brief why-based justifications; (v)
context-aware suggestions that acknowledge uncertainty.

6 DISCUSSION AND IMPLICATIONS

We dedicate this section to discussing the theoretical and practical implications of our findings.
Theoretically, our findings contribute by refining engagement theory [29, 38, 48, 49, 90]. We refine
previous engagement models [48] from framing emotional self-regulation as a preface to a co-
evolving process with behavioral resolution, especially under dialogic regulation. This bi-directional
relationship integrates affective regulation with behavioral resolution. We also extend existing
theoretical frameworks by identifying social calibration as a relational control mechanism that
conditions how engineers navigate the resolution process.

On the practical level, we identified a perceived shift in accountability in human-AlI settings —
from individual and collective to individual only — implying a reconfiguration of responsibility in
Al-assisted software engineering (SE) work. Our findings further suggest that engineers experience
Al-assisted reviews as diminishing certain socio-relational values (warmth, shared norms). Thus,
we delineate the boundary conditions for effective human-AI collaboration in the context of SE.

6.1 Theoretical Implications

Kahn’s theory explains the processes by which people adjust their “selves-in-roles” [48]. This
theory’s definition of engagement is well-aligned with our findings: ‘T defined personal engagement
as the harnessing of organization members’ selves to their work roles; in engagement, people employ
and express themselves physically, cognitively, and emotionally during role performances” [48]. Kahn’s
theory provides a coherent analytical lens to interpret our high-level engagement model (emotional
self-regulation — behavioral engagement — resolution and implementation). His notion of the self
being “harnessed” cognitively, emotionally, and physically aligns with the emotional readiness
and subsequent behavioral moves we observed in the transition from and at the same time the
intertwined relationship between feeling and doing. In addition, Kahn'’s theory is widely accepted
and adopted in many fields of studies [66, 85, 89], e.g., education [25], healthcare [43, 103], and
service work [51, 62].

Kahn’s theory premises that individuals can express both their personal selves and their roles
effectively, allowing for a dynamic interaction where self and role inform each other. It emphasizes
that personal engagement leads to authentic role behavior, showing one’s thoughts, feelings,
creativity, and personal connections while fulfilling job obligations [48]. Our findings capture this
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relationship between “self” and role in the engineers’ engagement trajectories. Through emotional
self-regulation, engineers actively and unilaterally negotiate how much of their personal selves, i.e.,
emotions, values, and interpersonal climate, they are willing to bring into their professional role
during code review. For example, those who choose reframing prefer internalizing emotion and
prioritizing task resolution, whereas those who prefer dialogic regulation manage it interpersonally
through interaction, allowing their authentic selves to surface in negotiation and meaning-making
with their peers.

Behavioral engagement, in turn, represents the outward expression of that negotiation, where
authenticity is balanced against role expectations, such as maintaining harmony, shared accountability,
and team norms. In the case of LLM-assisted reviews, this interaction becomes more intrapersonal:
engineers still enact authenticity through their commitment to quality and individual accountability
for code quality, yet with fewer relational cues mediating the expression of self within the role.

The tension we observed in the adoption of LLMs as reviewer may stem from this underlying
role- identity conflict. When the social and relational components of the role are removed, engineers
face a subtle threat to their professional identity [83]: what it means to be a “reviewer” or to be
“reviewed” becomes ambiguous. The LLM displaces the interpersonal dimension through which
authenticity, recognition, and shared accountability are enacted. As a result, engagement with Al
feedback is experienced less as a relational performance and more as an instrumental task. This
shift may constrain the software engineer role and its expressive and identity-affirming aspects,
challenging the equilibrium between the personal self and the professional role that Kahn’s theory
regards as central to authentic engagement [48].

Alami et al. [6, 8] found that software engineers seek “social validation” through the quality
of their code in code review. They pursue this “validation” from their peers by showcasing their
personal standards in coding and building a reputation of a competent coder among their peers [8].
The introduction of the LLM in code review, in our study, may have also challenged this process
and its underlying intents, conforming to group norms and reinforcing self-perception [8].

4 N
Theoretical Implication 1: Reframing Engagement in Human-AI Contexts

Our findings suggest that Al integration into socio-technical processes such as code review
challenges the traditional alignment between the role and the doing. In peer-led reviews,
engagement entails expressing the self through social interaction, negotiating meaning,
sustaining norms, and receiving recognition, which reinforces authenticity in Kahn’s sense
of “self-in-role”. When LLMs mediate or replace these interactions, the social grounding of
work diminishes: engineers continue to do the work (i.e., implement feedback), yet the role
through which they enact accountability, recognition, and belonging becomes ambiguous.
This decoupling transforms engagement from a relational to an instrumental act, prompting
engineers to question the authenticity of their contribution and the meaning of engagement

itself in a context that is no longer human-to-human.
AN J/

Kahn proposes three psychological conditions — meaningfulness, safety, and availability — that
influence personal engagement in people’s roles [48]. The theory suggests that these conditions
function as a contract between the person and their role, guiding their decision to engage or
disengage.

Psychological Meaningfulness. Psychological meaningfulness is the “sense of return on
investments of self in role performances” [48]. Kahn’s theory claims that personal engagement
is associated with psychological meaningfulness, and three factors influence this experience:
task characteristics, role characteristics, and work interactions. Meaningful tasks are those that
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are challenging, varied, and allow for autonomy, yielding both competence and growth. Role
characteristics involve identities that individuals must embody, which can align or conflict with
their self-perception, affecting their sense of meaningfulness. Additionally, the status associated
with roles contributes to feelings of value and recognition. Work interactions enhance psychological
meaningfulness through rewarding relationships and mutual appreciation, which satisfy the need
for relatedness. Conversely, negative interactions can diminish this sense of value, as respect and
appreciation are key to preserving psychological meaning in one’s work [48].

In our findings, meaningfulness emerges when engineers invest effort to demonstrate competence
and pursue growth. Task characteristics are instantiated by the dual investment of emotional self-
regulation and social calibration: reframing, dialogic clarification, and alignment to team norms
to reduce friction and enable competent action, potentially leading to improvement (resolution
and implementation). Role characteristics surface as behavioral engagement grounded in collective
accountability. Engineers treat “working toward resolution” as part of the author role; enacting
that role produces tangible returns (better code, learning), which are experienced as value and
recognition (learning and codification).

Work interactions complete the meaning loop: positive reinforcement, psychological safety,
reciprocity of effort, and adaptive social comparison provide relatedness and legitimize the effort.
Together, these mechanisms explain why peer-led review feels meaningful, even though socially and
affectively effortful. Additionally, role obligations are affirmed through resolution, and relational
exchanges validate contribution.

While our findings align with Kahn’s work, we also bring nuances to the theory. Our findings show
that engineers actively sustain meaning during code review, e.g., reframing criticism, dialoguing for
clarity, aligning with team norms, and ensuring accountability. This behavior preserves professional
integrity [8, 52] and displays competence, previously recognized as psychological antecedents of
meaningfulness in self-determination theory [88]. Thus, in contrast to Kahn'’s original settings,
where meaningfulness was embedded in inherently expressive (architecture) or service-oriented
(camp workers) roles, our findings suggest that in evaluative and cognitively intense contexts such
as code review, meaningfulness is actively sustained. Engineers achieve and preserve it through
emotional and social investments to transform negative feedback into learning and improvements
to the code. In this sense, meaningfulness in code review is both expression of self and preservation
of self (worth and professional integrity) in the face of evaluation.

4 N
Theoretical Implication 2: Meaningfulness is both Expression and Preservation of Self

In code review, meaningfulness arises when engineers invest emotionally and socially to
transform evaluative exchanges into opportunities for learning and improvement of their
code. Our findings extend Kahn’s concept of psychological meaningfulness. We show that
contextual, the task and the social obligations of the role shapes how engineers seek meaning.
Therefore, it spans beyond the expression of self to include the preservation of self.

Psychological safety. Psychological safety (PS) is the third condition of engagement in Kahn’s
theory [48]. It is the ability to express oneself without fear of negative repercussions [48]. It is
influenced by factors like supportive interpersonal relationships, group dynamics, management
styles, and organizational norms. In environments that promote PS, individuals feel safer to engage.
If they feel otherwise, they tend to withdraw [48]. Our findings corroborate this condition. In
peer-led code review, when engineers perceive the social climate as safe and non-punitive, they
show willingness to reframe the feedback and/or initiate dialogue, reducing avoidance and defensive
behavior. Therefore, PS seems to act as a social buffer that enables emotional self-regulation to
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transition into behavioral engagement. It may also shield against the negative effects during the
resolution. Similar conclusions have been echoed in SE studies [2, 11, 12, 94, 110].

Psychological Availability. “Psychological Availability is the sense of having the physical,
emotional, or psychological resources to personally engage at a particular moment” [48]. The
most relevant aspect of this condition to our findings is “emotional energy”, which refers to
the emotional labor required for individuals to invest in order to engage. Our findings further
refine emotional labor as a process of self-regulation that precedes behavioral engagement and
may continue throughout the resolution process. Engineers expend emotional resources to down-
regulate affect, reinterpret intent, and restore readiness to act constructively. This emotional labor
is not arbitrary; it is value-driven and anchored in the commitment to code quality, accountability
to peers, and a growth-oriented mindset. Our results thus extend Kahn’s theory by showing how
emotional labor can be simultaneously intrapersonal (self-regulation of affect) and value-driven
(aligned with personal values).

4 R
Theoretical Implication 3: Emotional Labor as Value-driven Psychological Availability

Our findings extend Kahn’s notion of psychological availability by framing emotional labor
as a value-driven resource. Engineers mobilize emotional energy through self-regulation to
transform evaluative tension into constructive action. This emotional labor is anchored in their
commitment to code quality, accountability for their work and to their peers, and a growth
mindset, which converts emotional expenditure into purposeful engagement. Psychological

availability thus emerges as both intrapersonal and normative.
AN J/

In software engineering (SE) research, emotions have attracted significant interest [79, 93], e.g., in
responding to requirements changes [63], in software artifacts [77], detection [64], and productivity
of software developers [40]. Theoretically, two key perspectives have emerged: one views emotions
as continuous functions modeled across dimensions like valence (pleasantness/unpleasantness)
and arousal (calm/excited) [87], while the other adopts a discrete approach identifying a limited set
of basic emotions (e.g., joy, frustration) [35]. Building on these perspectives, our evidence aligns
with Gross’s process model of emotion regulation [42].

The self-regulation repertoire we observed maps onto Gross’s model of antecedent-focused
strategies: situation selection (anticipatory avoidance), situation modification (dialogic clarification to
surface intent and restore common ground), attentional deployment (task-anchoring), and cognitive
change (reframing the intent); occasional response modulation appears as defensiveness [42]. In
Gross’s process model, emotions are assumed to arise from ongoing appraisals of situations [42].
In our findings, appraisal is value-driven: engineers evaluate comments against goals (quality),
norms (accountability, peer harmony), and mindset (growth), so self-regulation is not merely
hedonic [41, 42] (down-regulating unpleasant affect) but eudaimonic [41, 42] (pleasure achieved
through a meaningful life), aimed at preserving competence and relatedness.

While the introduction of LLM-assisted review appears to reduce some self-regulation demands,
it stripped interpersonal appraisal cues (lower arousal, reduced relatedness) and shifted resolution
toward individual sense-making. Yet the LLM cannot supply the relatedness and shared accountability
that sustain team-level meaning.

6.2 Practical Implications & Future Research

Our findings bring implications to the individual level (i.e., software engineers) and human-AI
collaboration in the context of software engineering. At the individual level, we contend that we
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cannot fully engineer out harshness and negativity from such a process; they recur in interpersonal
evaluation processes. The pragmatic lever is to equip engineers with self-awareness and agency
skills so they can preserve and achieve meaningfulness despite imperfect peers’ behavior. Our
findings also demonstrate that in a socio-technical process such as code review, the complex
trajectory to resolution is intertwined with seeking meaningfulness. Therefore, in similar processes,
Al should act as a supportive accelerator rather than a social substitute. At the organizational
level, the intricate relationship between software engineers’ role identity and their tasks uncovers
a deeply social, value-laden sense of meaning and accountability that the adoption of Al may

challenge.

6.2.1 Individual Level. Toxicity has been studied in code review [34, 95] and open source [22, 70, 96]
extensively in SE research [45]. While the work improved our understanding of its causes, detection,
and impacts, collectively the literature does not frame it as something to eliminate, but rather a
reality that should be managed and mitigated [99]. For example, Alami et al. [5] found that despite
the negativity experienced in open-source code reviews, contributors’ intrinsic and extrinsic
motivation enabled them to sustain their contributions, suggesting that interventions should
cultivate value-based agency and coping skills.

Practically, we argue that our findings imply that interventions should target software engineers’
self-regulation skills and value clarity rather than attempting to eliminate negative affect from peer
review. We recommend targeting education [32, 81], onboarding [16, 91], and mentoring [33] because
they align with offering effective avenues for learning [16, 33, 81]. For instance, education provides
scalable, low-stakes, and early exposure opportunities for teaching self-regulation and value
clarity [32]. Onboarding is a high-leverage socialization window [16], where norms, accountability
expectations, and review etiquette are most influenced at entry and potentially can shape behaviors.
Mentoring provides the situated, relational reinforcement that a classroom or policy cannot [33].

e Education. How: embed short modules on self-regulation, value clarity (quality, accountability,
peer harmony), and dialogic skills within SE curriculum and professional development.

e Onboarding. How: add a review readiness track to developer onboarding: (i) norms for
psychological safety and reciprocity of effort; (ii) tutorial on personal engagement plan (what
triggers emotions, preferred self-regulations, escalation path).

e Mentoring. How: pair newcomers with a review mentor; use brief, scheduled debriefs after
challenging reviews to surface regulation choices (“what I felt?, what I valued?, what I did?”)
and to align with team norms. Encourage mentors to model value-based reasoning (why a
change matters for quality, accountability, and meaningfulness).

e Team practices. How: institutionalize short, recurring touchpoints (e.g., monthly 15-minute
review health check) to re-affirm norms, share effective self-regulation moves, and calibrate
expectations.

Future research. Future research may consider evaluating which delivery modes (course module vs.
onboarding vs. mentoring) are most effective at improving perceived meaningfulness and reducing
avoidance and defensive responding.

6.2.2 Human-Al Collaboration in Software Engineering. Practically, our findings suggest that LLM
integration should be positioned as a supportive co-reviewer that preserves the social sources
of meaningfulness (team norms, shared accountability, negotiated understanding) rather than
replacing them. We also reported that when engineers deal with LLM alone, their decisions become
unilateral. While the engagement with the Al tool lowers emotional cost, it also emphasizes
the move from emotion self-regulation to ethics, value alignment, accountability, and governance
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literacy. Interventions should therefore target the same delivery channels: education [32, 81],
onboarding 16, 91], and mentoring [33].

e Education. How: embed short, practice-based modules on (i) Al affordances and limits
(hallucinations, context gaps, evaluation criteria), (ii) value alignment and professional
accountability when acting on Al suggestions, and (iii) introduce Al governance practices.

e Onboarding. How: add an Al-in-your-work track: (i) organizational rules for when and
where Al may be used; (ii) verification and context-enrichment steps before adoption; (iii)
accountability alignment (who is responsible when Al contributes).

e Mentoring. How: mentors should model judgment with Al use: reading LLM feedback/AI
outputs critically, articulating why suggestions are accepted or rejected, when to escalate to
team-level verification and approval.

e Team practices. How: institutionalize hybrid review rituals that keep humans in the loop: (i)
define when peer sign-off is required for Al-influenced changes, e.g., security/architecture;
(ii) schedule a monthly Al review health check to align Al-assisted practices with norm
compliance, correctness, and downstream rework.

e Tooling & policy. How: Publish and socialize an Al usage policy scoped to software engineering
workflows (permitted use, prohibited use, data handling, escalation).

Future research. Future research may consider evaluating (a) whether Al hybrid adoption (human
sign-off + Al triage) preserves perceived meaningfulness and collective accountability compared to
Al-only triage in code review; (b) trade-offs between Al adoption and team-level cohesion; and (c)
how governance literacy (ethics, accountability) moderates trust when Al participation scales.

6.2.3 Al Adoption in Software Engineering Practices. Our findings suggest that when Al is introduced
into socially meaningful practices such as code review, it not only adds a new tool, as historically
has been the case, e.g., static analyzers, CI services, etc.; but it also reconfigures and challenges
what it means to be a software engineer. Based on Kahn’s theory [48], in the case of peer-led
review, engineers enact roles that are explicitly social. They give and receive recognition, negotiate
standards, and share accountability. However, the introduction of an LLM has narrowed this social
and human context, from which engineers derive a sense of professional identity and meaningfulness
from interaction with peers, validation through the quality of their code, and reciprocal evaluation.

Al adoption strategies in SE should therefore be preferably framed as role-supporting rather than
role-replacing. Concretely, organizations should define Al as a tool that scaffold and extend human
expertise. Making the Al software engineer role boundaries explicit in policies, onboarding, and
everyday discourse may reduce the threat to role identity and maintain the sense that Al is there to
support engineers in doing their work, rather than hollowing it out.

Alternatively, as a research community, we need to further investigate the role identity of
software engineers, unpack the role identity and individual relationship, and how both the human
and social contexts nurture this identity, as well as how Al can become a partner in an environment
where meaning is derived from social interactions.

At the same time, when decisions on LLM-generated feedback become more unilateral and less
socially mediated, the future skill of software engineers should emphasize ethical discernment, value
alignment, and accountability when acting on Al advice. Education, onboarding, and mentoring
should therefore integrate not only technical skills to use Al but also governance literacy; when
to trust or challenge Al outputs, how to document Al influence on changes, and how to escalate
Al-shaped decisions to team-level discussion when values, norms, or safety are at stake.

Our findings also show potential promises. Our experiment showed that aligning the feedback
format with the engineers’ preferences reduces cognitive demands, thereby increasing the likelihood
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of adoption. We also report lower emotional and social costs when developers processed LLM-
assisted feedback. Nonetheless, our findings explain why LLMs should be adopted thoughtfully and
carefully in the code review process. DevelopersaAZ emotional engagement with human-authored
comments is a crucial step in their sense-making process, and the social nature of code review,
combined with the lack of engagement with LLM-generated feedback, means that naive adoption
risks opening PandoradAZs box, changing how developers process and resolve feedback, and
sidestepping a detailed and intricate sense-making process. To preserve the depth of the code
review process, we recommend the following two adoption strategies: AI-primed review (LLM as
first pass) and AI-mediated review (LLM as an emotional buffer for peer feedback).

For Al-primed review, the Al tool performs a first-pass review on the code. The aim of this
early and preliminary review is to surface issues and suggestions before a second review by peers.
This type of evaluation may reduce errors and prepare the code for a second peer-led review,
where the focus may shift to contextual issues and higher-order concerns such as design trade-offs,
team standards, and shared understanding of the code rather than surface-level errors. For the
Al-mediated review, Al could be integrated into the review workflow to rephrase, structure, and
improve the tone of peers’ feedback to reduce the emotional burden on the authors.

Future research. Future research may consider investigating: (a) how Al-assisted software engineering
practices affect software engineers’ role identity and perceived meaningfulness of work; (b) what
governance mechanisms (policies, workflow constraints, and oversight practices) may effectively
ensure accountability, transparency, standards, and norm compliance when Al tools participate in
software engineering decision-making; and (c) how software engineering education can integrate Al-
assisted tools in ways that foster Al collaboration literacy while preserving students’ foundational
SE skills (e.g., programming, design, debugging, and code comprehension).

7 RESEARCH TRUSTWORTHINESS

We implemented several techniques to address the requirements of research trustworthiness [68].
In this section, we report the techniques we used: Saturation, Member checking, Peer debriefing, and
Thick description.

Saturation: We triangulated data sources, including interviews, focus groups, and participant
feedback sessions. This exercise allowed us to ensure that our findings are corroborated across
different data sources and contexts.

As discussed in Sect. 4, during the re-analysis of the data Phase I then II, we monitored thematic
saturation [13, 44, 69, 75]. We documented the outcome of the monitoring process and made the
spreadsheet available in our shared documents package (see Sect. 4.7).

Member checking: Although we conducted a member checking activity in our previous work [7],
upon the completion of the analysis, we organized a second member checking [19] activity to collect
feedback from our interviewees on our findings. We summarized our RQs’ findings in an online
questionnaire and invited all 20 participants to participate. First, we asked them for each finding
to either “agree,” “neither agree nor disagree,” or “disagree." Then, irrespective of their level of
agreement, we asked them to comment on the findings. Table 13 summarizes the outcome of our
member checking and documents some illustrative comments. Sixteen participants responded. The
data and the questionnaire we used are available in our shared documents package (see Sect. 4.7).

Peer debriefing: Although the analysis was primarily conducted by the first author, the second
and fifth authors reviewed the proposed codes, and the results were continuously discussed and
scrutinized by the other two authors in several meetings throughout the analysis process. The
participation of two authors in the coding process helped minimize researcher biases [68]. This
approach is grounded in our epistemological stance, constructivism, which posits that knowledge
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Table 13. Member checking summary by research question (RQ2-RQ4). We invited all 20 participants; only
participants who took part of Phase Il could answer and comment of RQ4 (two participants took part of the
member checking but not the followup interviews).

Level of agreement (count)

RQ

Ilustrative participant comments

Agree Neither Disagree

RQ2 15 1 - “When it comes to myself and human feedback, I usually look towards dialogic
regulation. Feedback, when written down, can come over more harsh than people
speaking to each other. I have often found myself in a situation where the feedback
sounded harsh, but talking about it showed me that there was actually no bad
blood involved” (P19).

RQ3 16 - - “The interpretation makes sense, and the steps list above makes sense. Developers
usually tend to conform after they received feedback when its negative. They will
also start paying attention code related team culture, team practices if one exists
otherwise raise an attention to get those standards and practices incorporated
into the team. The bit on LLM also makes sense, they can really speed up tasks
but usually lacks context and unable to anticipate certain scenarios. Although
with the advancement with todays LLM’s these seem to be changing” (P3).

RQ4 14 - - “Yes, I agree that the overly verbose LLM feedback was not needed, from the LLM I
only need what is wrong with the code and how to fix it. I would be more receptive
to more detailed feedback and reasoning from a human” (P13).

is socially constructed and that collective intellectual engagement can lead to more reliable
understandings of the data [68].

Thick description: We endeavored to provide a detailed explanation of our research process and
the decisions we have made throughout (see Sect. 4). In addition, we assembled a comprehensive
replication package (see Sect. 4.7).

8 LIMITATIONS AND TRADE-OFFS

We conducted the code review process anonymously. We were constrained by the Prolific requirement
to maintain participant anonymity throughout the study, which is not the case in open source and
proprietary software development. In the latter, developers are colleagues and interact directly on
a daily basis. In such a social context, developers may align the tone of their feedback according to
status, relationships, and team culture [18, 53]. Similarly, in open-source development, communities
adopt different styles and strategies in pull request reviews, from “lenient” to “protective” according
to their history, culture, and sustainability strategy [4, 9]. Aware of this limitation, we asked
during the interview whether this factor has influenced our participants approach to reviews. Most
participants claimed this was not the case.

The code reviews were conducted in an artificial setting characteristic of a research environment.
Such a controlled environment may not capture the inherent complexity of a real-world setting.
However, this controlled environment allowed us to focus on the variables of interest and gain
nuanced findings [105]. We also acknowledge that our participants may have modified their
approach to the review compared to a professional setting, given the research nature of their
contribution. However, in the interview, we prompted all our participants to explain the content
and the delivery style they used. This “reflective questioning” uncovered the “authentic” reasoning
even when the original actions occurred in artificial settings [102].

We opted for ChatGPT 40 as the LLM of choice for the study due to its wide accessibility and
familiarity among a diverse group of participants. This model may not represent the full spectrum
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of available LLMs. Different models may generate varying quality of feedback, which may impact
participants’ perceptions and engagement with the reviews. However, ChatGPT is one of the
state-of-the-art LLM tools, which makes it a timely and relevant choice. In addition, using a single
LLM allowed us to collect consistent data, serving as a baseline for future research.

Another methodological limitation characteristic of interview studies is response bias [84]. We
remediated this potential limitation by anchoring the interview guide in the reviews received by
the interviewees from other participants. This strategy enhanced the relevance and contextual
accuracy of the data we collected.

We also did not explore other factors outside the team’s context. Our study setup remained
constrained with the context of a team; organizational factors such as career advancement and
financial rewards could also influence engineers’ behaviors in how they deal with feedback. For
example, while the self-regulation strategies seem to be motivated by intrinsic drives such as
personal motivation for quality and a growth mindset, extrinsic drives may also influence engineers’
inclination to adopt strategies better aligned with organizational expectations. Alami & Ernst [6]
found that software engineers’ accountability for code quality is also influenced by institutional
drives, such as financial rewards and performance evaluation.

9 CONCLUSION

In this study, we framed code review as a socio-technical practice, and we sought to understand
engagement in the context of peer-led and LLM-assisted reviews. We found that engineers move
from feeling to doing: emotional self-regulation — behavioral engagement (social calibration and
resolution) — outcomes (adoption, learning, and norm codification). By comparing this loop in
peer- and LLM-assisted settings, we found that emotional self-regulation and social calibration
become less relevant. We also identified an accountability shift when Al enters the workflow: from
shared, peer-enforced responsibility toward individuals. We extend engagement theory [48] beyond
“expression of self in role” to include the preservation of self under evaluation conditions (e.g., code
review), and we surface social calibration as a relational control mechanism that conditions how
resolution unfolds. We also inform the theory by demonstrating that emotional labor is value-driven.

Practically, while we cannot engineer negativity out of human review, we can equip engineers to
manage it. Meaningfulness is sustained not by sterilizing emotion, but by strengthening self-
regulatory repertoires and clarifying values, accountability, and peers’ expectations through
education, onboarding, mentoring, and team practices. We also recommend integrating LLMs as
supportive co-reviewers without displacing the social sources of meaning, to minimize disruption to
the social integrity of code review. Hybrid practices and human sign-off on Al-influenced changes
are potential also adoption avenues.

In sum, we report that the path to a higher-quality code runs through human judgment made
sturdier by values and tools that know their places. We recommend AlI for support, keeping the
human in the loop for truth, accountability, and meaning,.
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