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ABSTRACT
In software engineering the role of human aspects is an important
one, especially as developers indicate that they experience a wide
range of emotions while developing software. Within software en-
gineering researchers have sought to understand the role emotions
and sentiment play in the development of software by studying
issues, pull-requests and commit messages. To detect sentiment,
automated tools are used, and in this doctoral thesis we plan to
study the use of these sentiment analysis tools, their applications,
best practices for their usage and the effect of non-natural language
on their performance. In addition to studying the application of sen-
timent analysis tools, we also aim to study self-admitted technical
debt and bots in software engineering, to understand why devel-
opers express sentiment and what they signal when they express
sentiment. Through studying both the application of sentiment
analysis tools and the role of sentiment in software engineering,
we hope to provide practical recommendations for both researchers
and developers.
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1 INTRODUCTION
In modern software engineering an important role is fulfilled by
open-source software projects. The developers and maintainers of
open-source software develop and maintain libraries and software
packages that are used by many software applications in both open
and closed-source settings. Because so many software projects de-
pend on open-source software, the continued sustainability and
health of open-source software projects is increasingly important
as open-source software projects are sometimes abandoned [4].
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Additionally, while developing software, software engineers self-
describe that they experience a wide range of emotions [43]. The
way in which emotions are experienced, and their theoretical fun-
daments, have been extensively studied, both outside of software
engineering [14, 35] and within [3, 10, 34, 39]. For instance, Asri
et al. found that code reviews in which negative emotions were
expressed take longer to complete [3]. Meanwhile, Ortu et al. found
that issues with negative emotions take longer to resolve [34].

The study of emotions and sentiment experienced and expressed
by developers can hopefully help researchers develop tools and
techniques to support developers with the management of open-
source projects [33]. In this doctoral thesis we aim to further the
understanding of human aspects in software engineering, in par-
ticular by focussing on the study of emotions and sentiment in
Software Engineering. Therefore, we pose the following research
question:

Research Question

How can the detection of sentiment and emotions expressed
by developers be used to improve software development?

As previously stated: The study of sentiment and emotions in
Software Engineering is incredibly broad, and it ranges from studies
of burnout [27, 37] to studies of sentiment in commit messages [38].
Since it has been found for instance that expression of negative
sentiment might negatively affect software development [3, 34] we
seek to study two specific areas in the context of this thesis: we
study existing sentiment analysis tools and the ways in which they
are employed by researchers. Secondly, we attempt understand how
sentiment affects software developers through studying the ways in
which developers express themselves while developing software.

2 RESEARCH BACKGROUND
Researchers outside of software engineering agree that the study of
emotions and sentiment in the workplace is important [2]. Accord-
ing to Posner et al. the emotions experienced by humans (fear, anger,
happiness, etc.) are a continuous function that can be modeled as a
combination of valence and arousal [35]. Where valence captures
the polarity of the emotion (positive or negative) and arousal the
excitement of the emotion (high or low).

Within software engineering emotions and sentiments have been
extensively studied. Researchers have used both automatic and
manual methods to detect emotions and sentiment expressed by
developers. Girardi et al. have used biometric sensors to detect emo-
tions experienced by software developers in the workplace [16, 17],
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while Hermann and Klunder studied the sentiment expressed by stu-
dents in in-person meetings [19]. Mäntylä et al. studied the valence
and arousal observed in issue trackers and proposes that it can be
used to detect whether developers might burn-out [27]. Raman et al.
attempt to solve the problem of burn-out by developing a detector
that can detect toxic interactions in open-source repositories [37].
While studying the sentiment expressed by developers who per-
form refactoring tasks, Singh and Singh found that developers are
more likely to express negative sentiment in the commit messages
of refactoring commits [38].

Researchers have used a wide variety of tools to detect senti-
ment. These tools vary from dictionary based approaches [1] to
machine learning based approaches [7, 12, 20] and deep learning
tools [9, 46]. In addition to employing these tools, researchers have
also extensively studied them to understand how best to employ
these sentiment analysis tools. Jongeling et al. found that general-
purpose sentiment analysis tools do not work well for software en-
gineering data [21]. In a more recent benchmarking study Novielli
et al. came to the conclusion that even sentiment-analysis tools
tailored for software engineering do not generalize across differ-
ent domains [31]. For instance, sentiment analysis tools trained
on GitHub data do not perform well on StackOverflow data. In a
follow-up study Novielli et al. found that the application of software-
engineering specific sentiment analysis tools off-the-shelf might
introduce a threat to conclusion validity [32]. While researchers
have sought to understand how to best apply sentiment analysis
tools, it is still unknown whether the predictive performance of
sentiment analysis tools can be further improved.

3 TOOLING FOR SENTIMENT ANALYSIS
The first area we discuss in the doctoral thesis is the application of
sentiment analysis tools to software engineering. As discussed in
Section 2 a wide variety of studies has sought to apply sentiment
analysis and emotion detection to the analysis of software engi-
neering data. However, a comprehensive overview of the different
studies, sentiment analysis tools and limitations discussed in these
studies does not exist. Therefore we pose:

RQ1: How are sentiment analysis tools applied by researchers,
and what are their conclusions?

By studying the applications of sentiment analysis tools we hope
to get a better overview of the different tools, their limitations, and
the way in which these tools have been applied by researchers. This
overview can be used by researchers to understand what tools exist,
and how these tools have been evaluated and applied.

Researchers have extensively studied the limitations of the appli-
cation of sentiment analysis tools for software engineering [21, 31,
32]. Several recommendations on how sentiment analysis should
be applied to software engineering data exist [21, 31]. Additionally,
while replicating software engineering studies that derive conclu-
sions related to sentiment Novielli et al. found that the application
of out-of-the-box sentiment analysis tools threatens conclusion
validity [32]. However, there is no single place where all recom-
mendations, implications of the recommendations, and evidence
for these recommendations is gathered. Therefore we pose:

RQ2: What are best practices for the application of sentiment
analysis tools to software engineering data?

By studying this question we hope to validate and gather the
latest recommendations on the application of sentiment analysis
tools for software engineering. Moreover, where possible wewill try
to verify these recommendation. Ideally this will help researchers
derive reliable conclusions when applying sentiment analysis tools.

Data gathered from social coding platforms for sentiment analy-
sis often contains non-natural language [5, 30]. Examples of non-
natural language are URLs, references to pull-requests (#432), etc.
Efstathiou and Spinellis argue that these non-natural language to-
kens should be replaced with meta-tokens that capture the type
of the non-natural language elements [13]. The strategies used by
sentiment analysis tools to address non-natural language, and the
effect that meta-tokensmight have on the performance of sentiment
analysis tools has not yet been studied, therefore we pose:

RQ3: How do existing sentiment analysis tools address non-natural
language and does meta-tokenization of non-natural language
affect their performance?

If the replacement of non-natural language elements through
meta-tokenization improves the performance of sentiment analysis
tools, this technique can be used to further improve sentiment
analysis, and ensure that conclusions derived from the application
of sentiment analysis tools are accurate.

3.1 Approach
To answer RQ1 and RQ2 we perform a systematic literature review
(SLR) according to the guidelines of Kitchenham and Charters [22].
For both RQs we select studies that are peer-reviewed academic
studies, published at respectable venues who are related to soft-
ware development and apply automated sentiment analysis tools.
For RQ2 we further constrain our search space and we only select
studies that benchmark, compare, or discuss recommendations for
the application of sentiment analysis tools for software engineer-
ing. Secondly, where possible we will replicate the experiments on
which the replications in the source-paper are based.

To address RQ3 we benchmark state of the art sentiment analysis,
and we evaluate them in an experimental setup similar to the one
used by Novielli et al. in their benchmark study [31]. We first study
the existing preprocessing techniques used by the state-of-the-
art sentiment analysis tools. We then take existing datasets for
sentiment analysis in software engineering and in these datasets
we manually identify all non-natural language elements. We do
this by sampling a small number of items from a dataset, and we
manually annotate all non-natural language elements. Based this
manual identification of non-natural language elements, we create
a meta-tokenized version of each dataset in which we replace the
identified non-natural language elements. To assess whether there
is a difference in performance, we compare the performance of
sentiment analysis tools trained on original and meta-tokenized
version of each dataset. For this study, performance is measured
using metrics like precision, recall and f1 scores, together with the
agreement of the sentiment analysis tools with each other.

3.2 Findings
The study answering RQ1 has been published at TOSEM [23]. A total
of 185 primary studies were found that match the specified inclusion
criteria. From the found studies we conclude that opinion mining
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techniques have been applied to a wide variety of topics, from
requirements, to team management and software design. Moreover,
from the SLR we also learn that a wide variety of sentiment analysis
and other opinion mining tools have been used in the literature.
Additionally, there has also been a large amount of benchmarks,
especially for sentiment analysis tools, that compare these tools
with each other to determine which tools are more accurate.

The studies answering RQ2 and RQ3 are still in progress and
have not been published yet.

4 APPLICATIONS OF SENTIMENT AND
EMOTIONS

From the SLR on the application of sentiment analysis and opinion
mining we know that a lot of work has sought to understand the
emotions expressed by developers [24]. However, so far no research
has focused on understanding the role of sentiment in Self-admitted
technical debt (SATD) and software bots. Within this doctoral thesis
we seek to continue this work by focussing on both these areas.
For both of these areas we seek to understand whether and how
developers use and interpret the expression of negative sentiment.

4.1 Self-Admitted Technical Debt:
Self-Admitted Technical Debt (SATD) is the study of technical debt
that is admitted by developers in source-code [36].While expressing
SATD, developers describe a wide variety of issues. These issues
include items such as code debt, design debt, requirement debt,
etc. [6, 26]. When developers record SATD, they might also express
negative sentiment in the source-code comment. Developers might
use the expression of negative sentiment as a proxy for priority, or
importance. However, as of yet it is unclear whether developers ex-
press negative sentiment in SATD, whether they interpret negative
sentiment as a proxy for priority. Therefore we pose:

RQ4: What role does negative sentiment play in the expression
of Self-Admitted Technical Debt?

As SATD is frequently expressed in source-code comments
a better understanding of whether and how negative developers
express themselves might help maintainers identify high priority
SATD items. Additionally, by understanding the perceptions of
developers towards negative sentiment in SATD we can better
understand what developers attempt to convey when they express
negative sentiment in SATD and whether and how maintainers
should prioritize SATD in which negative sentiment is expressed.

4.1.1 Background. The concept of Self-Admitted Technical Debt
(SATD) was first described by Potdar and Shibab, who found that
SATD occurs in up-to 30% of source-code files [36]. Several re-
searchers have studied the content of SATD. Both Maldonado and
Shibab and Bavota and Russo have studied the content of SATD, and
they categorize SATD based on where in the software-development
lifecycle the technical debt occurs [6, 26]. Zampetti et al. studied
the differences between SATD admitted in open-source and closed-
source, finding that admitting SATD in closed-source might be
implicitly discouraged [45]. While SATD is often studied in source-
code Xavier et al. studied whether and how SATD is reported in
issue trackers, finding that only 29% of SATD in issue trackers can
also be found in source-code [44].

4.1.2 Approach. To address RQ4 we analyze two different data-
sources. We manually label existing SATD instances from open-
source software projects to record whether negative sentiment is
present. Secondly, to understand whether the type of SATD issue
described in a comment influences whether comments are more
likely to be negative we analyze the distribution of sentiment polar-
ity per SATD category. While studying existing comments allows
us to determine whether developers express negative sentiment this
does not allow us to understand how developers interpret and per-
ceive negative sentiment in SATD. Therefore, we expand our study
of existing SATD comments with a survey targeting open-source
developers. In this survey we:

— ask developers whether they express negative sentiment
when writing SATD,

— whether they believe the expression of negative sentiment
in SATD is acceptable,

— whether they interpret negative sentiment in SATD as a
proxy for priority, and

— we present several vignettes [28], that have been inspired
by existing SATD items, to the respondents and ask them to
draft a SATD comment for the particular item.

Using questions on perceptions and believes we can better under-
stand what developers seek to convey when they author comments
containing negative SATD. Additionally, through the vignettes we
can compare the occurrence of negative sentiment in SATD for the
comments written based on the vignettes, and the comments ex-
tracted from source-code. Through a comparison of the distribution
of sentiment polarity per SATD category we can hopefully better
understand what role negative sentiment plays in SATD.

4.1.3 Findings. The study in which we address RQ4 has been ac-
cepted for publication at the Special Issue of MSR 2021 of EMSE [8].
In this work we analyzed an existing dataset of 1038 SATD instances
published by Maldonado et al. [25] and we combined this analysis
with a survey of 46 open-source developers.

After manually labeling the SATD comments from Maldonado et
al. we find that negative sentiment is expressed in SATD. However,
the occurrence of negative sentiment varies significantly between
SATD categories. For instance, negative sentiment is more com-
mon in SATD describing functional issues such as bugs, compared
to SATD describing partially implemented functionality or poor
implementation choices.

From the survey with developers we learn that roughly 30% of
the respondents interpret negative sentiment in SATD as a proxy
for priority. However, this is contrasted by a slightly larger group
of respondents who do not interpret negative sentiment in SATD
as a proxy for priority. When asked whether developers believe
if negative sentiment is an acceptable practice to indicate priority
we find that the majority of respondents does not believe express-
ing negative sentiment is acceptable. Moreover, about half of the
respondents indicates that SATD should not be recorded in source-
code but instead should be recorded in issue trackers. In response
to the vignettes for which respondents were asked to draft SATD
comments we find that in the setting of the survey respondents are
more likely to be neutral than in the existing SATD comments from
Maldonado et al..
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4.2 Bots
The adoption of bots by software engineers has not been without
concerns. Various studies have found that developers are affected
and distracted by the noise of adopting a bot in software projects [29,
40, 42]. One possible signal that software engineers can give to
indicate that they dislike certain bot actions are GitHub reactions.
From previous work by Farah et al.we know that the actions of bots
on GitHub are more likely to be disliked [15]. However, currently it
is not clear whether disliked bot actions are disliked because the bot
introduced noise, or because of other factors. Therefore we pose:

RQ5: How do developers react to, and evaluate, the actions of
bots?

With RQ5 we seek to understand how certain characteristics
of bots influence the reactions of software engineers towards the
actions of bots. Moreover, we seek to understand what developers
seek to achieve when they react negatively to bot interactions. Do
they just seek to express their annoyance, or do they hope to enact
change by disliking the actions of bots?

4.2.1 Background. Since bots have been adopted by software de-
velopers they have been studied and characterized by researchers.
Storey and Zagalsky outlined and described the role bots fullfil in
software engineering projects [40]. Wessel et al. found that devel-
opers use bots for a variety of purposes, from maintenance tasks, to
the reviewing of pull requests and welcoming newcomers [41]. Dey
et al. focus on bots that commit to repositories, and find that bots
which commit code often change documentation and web-pages,
as opposed to the actual source-code. [11].

With the adoption of bots, researchers have also sought to un-
derstand how the adoption of bots impacts and affects developers.
Mirhosseini et al. found that software projects which adopt bots to
notify developers of out of data dependencies get overwhelmed by
the amount of notifications that are sent by these bots [29]. Wessel
et al. further studied bots and found that developers identify the
noise introduced by bots as a recurrent problem [42].

4.2.2 Approach. To address RQ5 we take an existing dataset of
manually validated bot accounts published byGolzadeh et al. andwe
collect all comments in pull-requests and issues for the repositories
in the dataset [18]. In addition to mining the comment we also mine
all reactions (thumbs ups, thumbs downs, etc.) that users on GitHub
have given on the comments.

Using this data we aim to understand the bot actions that gather
a large amount of negative reactions. By qualitatively studying
these bot actions, the context surrounding the comments, and users
that give the reactions we hope to better understand the ways
in which bot design might influence developer perception of the
bots. Additionally, we also aim to understand who responds to bot
actions. Are they project members of the project itself? Or are they
outsiders? Secondly, using a survey we also seek to study what
developers attempt to convey when they respond negatively to bot
actions. Using this survey, we seek to understand the motivations
of developers for responding to bot accounts, and the message they
seek to convey.

4.2.3 Findings. The study through which we seek to address RQ5
is currently in progress and no results have been obtained yet.

5 CONCLUSIONS AND FUTUREWORK
While developing software developers describe that they experience
emotions [43]. Researchers have sought to understand the ways
in which developers express emotions by studying a variety of
software development activities [3, 10, 34, 39].

For this doctoral thesis we plan to focus on how researchers
apply tools that can be used to detect sentiment in software en-
gineering data, and we aim to study how developers apply these
tools (RQ1), what the best practices for the usage of sentiment anal-
ysis tools are (RQ2), and whether meta-tokenization of non-natural
language improves performance (RQ3). By studying these three
research questions we aim to provide researchers with practical
recommendations on how to reliably apply sentiment analysis tools.

In addition to studying the usage of sentiment analysis tools in
academic studies we also aim to understand why and how develop-
ers express sentiment when contributing to open-source software.
For this, we plan to focus on two areas of software engineering:
we seek to study the expression of negative sentiment in SATD
(RQ4), in an attempt to understand how developers interpret and
perceive negative sentiment in SATD. Secondly we aim to study
how developers react to bot actions on GitHub (RQ5), in an attempt
to understand what bot actions developers negatively react to, and
what developers seek to signal using these reactions.

In the context of this doctoral thesis the work for RQ1 and RQ4
have been published at TOSEM and EMSE respectively [8, 24].
The work for the other research questions (RQ2, RQ3, & RQ5) are
currently in progress.
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